
Dirk Praetorius, Wintersemester 2015/16
Michele Ruggeri 25.-27.11.2015

Übungen zur Vorlesung
Einführung in das Programmieren für TM

Serie 7

Aufgabe 7.1. Explain the differences between variables and pointers. What are advantages resp. dis-
advantages of these?
Write a function swap that swaps the contents of two variables x, y. What is the problem with the
following code?

void swap(double x, double y)

{

double tmp;

tmp = x;

x = y;

y = tmp;

}

Aufgabe 7.2. The function squareVec should square all entries of a given vector x ∈ Rn, i.e., the input
(−1, 2, 0) should be turned into (1, 4, 0). The input vector should be passed as a pointer.

#include <stdio.h>

int squareVec(double vec, int n) {

int j=0;

for(j=1, j<dim; --j) {

*vec[j] = &vec[j] * &vec[j];

}

return vec;

}

main() {

double vec[3] = {-1.0,2.0,0.0};

int j=0;

squareVec(vec,3);

for(j=0; j<3; ++j) {

printf("vec[%d] = %f ",j,vec[j]);

}

printf("\n");

}

Change only the function squareVec, such that the main programm prints out the correct result. How
many errors do you find? What is the computational complexity (Aufwand) of squareVec?

Aufgabe 7.3. As for the contents of variables of elementary type (double,int,...), you can print
out the content of a pointer with help of printf. The place-holder %p is used for addresses (which
are the contents of pointers!). The output is system-dependent, but mostly in hexadecimal numbers.
Write a function void charPointerDist(char* startaddress, char* endaddress) that prints out
the following three values tabularly:
• Starting address
• End address
• Distance (difference) between both addresses (take care of the place-holder in printf!)

Since arrays are stored connectedly, the distance between two successive elements corresponds to the
memory used for the specific datatype. Check your function with a char-array c[2] and the follwoing
calls:

charPointerAbstand(&c[0],&c[1]);

charPointerAbstand(c,c+1);

Then, write a function void doublePointerDist(double* startaddress, double* endaddress) and
test it with a double-array. Compare the differences between the results of the two functions.
Optionally: Find out how much memory is used for the types short, int, and long on the lva.student

server.

Aufgabe 7.4. Given a differentiable function f : [a, b] → R and x ∈ [a, b], the derivative f ′(x) can be
approximated by the different quotient

Φ(h) :=
f(x+ h)− f(x)

h
for h > 0.

Write a function double* diff(double x, double h0, double tau, int* n), which computes the
sequence Φ(hn), where hn := 2−nh0, until

|Φ(hn)− Φ(hn+1)| ≤

{
τ if |Φ(hn)| ≤ τ, or

τ |Φ(hn)| else.

The function uses a suitable implementation of the object function double f(double x) and returns
the vector of the complete sequence (Φ(h0), . . . ,Φ(hn)), as well as the length of the vector. Save your
source code as diff.c into the directory serie07.

Aufgabe 7.5. An alternative root-finding algorithm is the Newton method. Let f : [a, b]→ R. Given an
initial guess x0, define the sequence (xn)n∈N via

xk+1 = xk − f(xk)/f ′(xk).

Implement the algorithm in a function newton. Given x0 and a tolerance τ > 0, the function performs
the Newton iteration until

|f ′(xn)| ≤ τ

or

|f(xn)| ≤ τ and |xn − xn−1| ≤

{
τ for |xn| ≤ τ,
τ |xn| else.

In the first case, print a warning to inform that the result is presumably wrong. The function uses suitable
implementations of the object function double f(double x) and its derivative double fprime(double

x). Then, write a main program which reads x0 from the keyboard and returns xn. Save your source
code as newton.c into the directory serie07.

Aufgabe 7.6. The Newton method from Aufgabe 7.5, besides a function f to evaluate the object
function, also requires a function fprime to evaluate the derivative f ′ of f . Alternatively, you might
replace f ′(xk) with the different quotient Φh(xk) from Aufgabe 7.4. Realize this idea in a function
newton2(x0,h0,tau), which implements the Newton method from Aufgabe 7.5 replacing the derivative
f ′(xk) with the result of diff(xk,h0,tau,n). Save your source code as newton2.c into the directory
serie07.

Aufgabe 7.7. Write a function merge that joins two arrays a ∈ Rm and b ∈ Rn, which are sorted in
ascending order, into the array c ∈ Rm+n such that the array c is sorted in ascending order as well, e.g.,
a = (1, 3, 3, 4, 7) and b = (1, 2, 3, 8) should be joined into c = (1, 1, 2, 3, 3, 3, 4, 7, 8). Use the fact that the
arrays a,b are sorted! The input of the function should be a base-pointer to the array c and the length
m,n. It should hold cj = aj for j = 0, . . . ,m− 1 and cj = bj−m for j = m, . . . ,m+n− 1, i.e. the array c
reads c = (a, b). The input array should be overwritten by the function. You can use a temporary array
of length m+ n in your function. Furthermore, write a main program that reads in m,n ∈ N as well as
a ∈ Rm and b ∈ Rn, and prints out the result c ∈ Rm+n.

Aufgabe 7.8. Write a recursive function mergesort that sorts an array a in ascending order and returns
the correctly sorted array. Use the following strategy:

• If the length of a is ≤ 2, then sort the array a explicitely.

• If the length of a is > 2, then split a into two arrays b, c of half length. Call the function mergesort

recursively for b and c, and rejoin the arrays b and c to a sorted field a.

Think about how to rejoin the subarrays to a sorted array a in the second step. Think of this strategy
with help of the example a = (1, 3, 5, 2, 7, 1, 1, 3). Test your program appropriately. Moreover, write a
main programme in which you read in the array a, sort it with mergesort and print the sorted array a.
The length of a should be a constant in the main-programme, but mergesort should work for arbitrary
lengths. Save your source code as mergesort.c into the directory serie07.

