Dirk Praetorius, Sommersemester 2018
Gregor Gantner 19.06.2018

Ubungen zur Vorlesung
Einfithrung in das Programmieren fiir TM

Serie 12

Aufgabe 12.1. Implement the class Person which contains the members name and address. Derive from
Person the class Student, that contains the additional data fields matriculationNumber and study.
Derive from Person also the class Worker that contains the additional data fields salary and work.
Write set/get functions, constructors, and destructors for all classes. Moreover, write a main progam
to test your implementation!

Aufgabe 12.2. Implement the method print for the basis class Person from Exercise The method
should print to the screen name and address of a person. Redefine this function for the derived classes
Student and Worker so that also the additional data fields of these classes are printed. Moreover, write
a main programm to test the print-methods of the different classes.

Aufgabe 12.3. Derive the class SquareMatrix from the class Matrix from the lecture. This class is
used to store square matrices and should contain all functionalities from the basis class Matrix. Test
your implementation accurately!

Aufgabe 12.4. We consider the class Matrix as well as the derived classes Vector from the lecture
and SquareMatrix from Exercise Implement the method solve for the class SquareMatrix, which
solves the linear system Ax = b by using the so-called Gaussian elimination. Consider a matrix A € R"*"
(type SquareMatrix) and a right-hand side vector b € R™ (typ Vector). The algorithm reads as follows:

e First of all, the matrix A is converted into an equivalent upper triangular matrix. Note that also
the right-hand side vector b must be modified accordingly.

e The resulting system, characterized by an upper triangular matrix A, is then solved directly.

In particular, during the first elimination step, an appropriate multiple of the first row of the matrix is
subtracted from the remaining rows so to obtain a matrix of the form

ail ai12 o Qip
0 az2 ... Q2pn

A =
0 ano ... Qnn

In the second elimination step, an appropriate multiple of the second row of the matrix is subtracted
from the remaining rows so to obtain a matrix of the form

ailp a2 aiz ... Qin

0 a22 ass N agn

A= 0 0 ass .o Q2p
0 0 ang ... Qun

After n — 1 elimination steps, one obtains an upper triangular matrix A. Use assert to ensure that,
in the k-th elimination step, the condition axy # 0 is satisfied. Don’t forget that also the right-hand
side vector b € R™ must be modified accordingly. To solve the system Az = b with A being an upper
triangular matrix, use the same approach considered for lower triangular matrices in Exercise 11.5). What
is the computational cost of your implementation of the Gaussian elimination and why? To undestand
the algorithm, start with simple examples with A € R?*2 and A € R3*3. Test your implementation
accurately!

Aufgabe 12.5. The Gaussian elimination algorithm from Exercise fails when it happens that
agr = 0 in the k-th elimination step. This can happen even when the linear system Az = b has a unique
solution x. To avoid this, the algorithm is usually extended with the so-called pivoting:

e During the k-th step, choose amongst ayy, ..., a,i the element ay,, with the largest absolute value.
e Swap the k-th and the p-th row of A (and b).
e Perform the elimination step as before.

Implement for the class SquareMatrix from Exercise the method gausspivot, which computes the
solution of the system Az = b following the aforementioned strategy. (It is possible to prove that the
Gaussian elimination algorithm with pivoting can be successfully applied if and only if the linear system
Az = b admits a unique solution. A proof of this result can be found in any numerical analysis book.
Test your implementation accurately!

Aufgabe 12.6. Derive from the class SquareMatrix from Exercise[12.3]the class DiagonalMatrix. Only
the diagonal entries of the matrix must be stored. Implement constructors, type cast and access to the
coefficients. For each entry A;; with ¢ # j proceed as follows: Save additional private members double
zero and double const_zero and use it to access the coefficients. That means that a call of the ()-
operator for const-objects returns const_zero and in case of a normal call the ()-operator returns zero.
Make sure to set zero to 0 in every non-const call of the ()-operator. Why? Test your implementation
accurately!

Aufgabe 12.7. Redefine the method solve from Exercise for the class DiagonalMatrix from
Exercise [12.6] in such a way that the system Ax = b with A being a diagonal matrix is solved by
exploiting the diagonal structure of the matrix. What is the computational cost of your implementation
and why? Test your implementation accurately!

Aufgabe 12.8. What is the output of the following programme? Explain why!

#include <iostream>
using std::cout;
using std::endl;
class BasisClass {

protected:
int N;
public:
BasisClass() {
N = 0;
cout << "Standard constr. BasisClass" << endl;
}
BasisClass(int n) {
N = n;
cout << "Constr. BasisClass, N = " << N << endl;
}
“BasisClass () {
cout << "Destr. BasisClass, N = " << N << endl;
}
BasisClass(const BasisClass& rhs) {
N = rhs.N;
cout << "Copy constr. BasisClass" << endl;
}
BasisClass& operator=(const BasisClass& rhs) {
N = rhs.N;
cout << "Assignment operator BasisClass" << endl;
return *this;
}

int getN() const { return N; }

void setN(int N) { this->N = N; }

};
class Derived : public BasisClass {
public:
Derived(){
cout << "Standard constr. Derived" << endl;
}

Derived(int n):BasisClass(n) {

}

cout << "Constr. Derived, N = " << N << endl;

~Derived() {

}

cout << "Destr. Derived, N = " << N << endl;

Derived(const Derived& rhs) {

}

N = rhs.N+7;
cout << "Copy constr. Derived" << endl;

Derived& operator=(const Derived& rhs) {

};

N = rhs.N;
cout << "Assignment operator Derived" << endl;
return *this;

Derived foo(Derived X){
Derived tmp(5);
tmp.setN(X.getNO*X.getNQ);
return tmp;

}

int main()

{

Derived ah(10);

{
Derived gg(13);
BasisClass bs;
BasisClass mr=bs;
ah=gg;

}

ah=foo(ah);

return 0O;

