Übungen zu Fana2 WS11, 3. Übung

1. Ein topologischer Raum (X, \mathcal{T}) heißt vollständig regulär, falls er (T2) erfüllt und falls es zu jedem offenen $O \in \mathcal{T}$ und jedem $x \in O$ eine stetige Funktion $f: X \to [0, 1]$ gibt, sodass f(x) = 1 und $f(O^c) \subseteq \{0\}$.

Man zeige, dass Teilräume versehen mit der Spurtopologie von vollständig regulären Räumen auch vollständig regulär sind.

Man zeige weiters, dass, falls die Abbildung ι aus dem letzten Beispiel der 2ten Übung betarchtet als Abbildung von X auf $\iota(X)$, versehen mit der Spurtopologie als Teilmenge von M, ein Homöomorphismus ist, der Raum X dann vollständig regulär ist.

Schließlich zeige man, dass, wenn X vollständig regulär ist, die Abbildung $\iota:X\to\iota(X)$ ein Homöomorphismus ist.

Hinweis: Zu jeder $O \in \mathcal{T}$ und $x \in O$ betrachte man $\{m \in M : m(f) > \frac{1}{2}\} \cap \iota(X)$, wenn f wie in der Definition von 'vollständig regulär' ist. Wie liegt diese Menge, wenn man sie mit $\iota(O)$ und $\iota(x)$ vergleicht?

Bemerkung: M bezeichnet man auch als Stone-Czech Kompaktifiziereung, wenn X vollständig regulär ist. Sie ist bis auf homöomorphe Kopien jene Kompakte 'Obermenge' βX von X, die X dicht enthält und sodass sich jede beschränkte und stetige Funktion auf X stetig nach βX fortsetzen lässt.

2. Sei Ω ein kompakter T2-Raum und $\Phi: C(\Omega) \to \mathfrak{C}(\subseteq \mathcal{B}(H))$ ein isometrischer C^* -Isomorphismus. Bezeichne mit \mathcal{A} die σ -Algebra aller Borel Mengen in Ω . Weiters sei E das eindeutige reguläre Spektralmaß für $\langle \Omega, \mathcal{A}, H \rangle$, sodass

$$\Phi(\phi) = \int \phi \, dE, \; \phi \in C(\Omega) \; .$$

Man zeige: Ist $\Delta \subseteq \Omega$ offen und nicht leer, so gilt $E(\Delta) \neq 0$.

Hinweis: Ω is vollständig regulär!

3. Mit der Notation aus dem letzten Beispiel sei $\Delta \in \mathcal{A}$, und setze $G := E(\Delta)H = \operatorname{ran} E(\Delta)$. Sind $\phi_1, \phi_2 \in B(\Omega, \mathcal{A})$, so zeige man, dass $[\int \phi_1 dE]|_G = [\int \phi_2 dE]|_G$, wenn $\phi_1(t) = \phi_2(t)$, $t \in \Delta$.

Zeigen Sie, dass dabei $\sigma([\int \phi dE]|_G) \subseteq \overline{\phi(\Delta)}$.

Zeigen Sie weiters, dass für offene und nichtleere Δ und $\phi \in B(\Omega, \mathcal{A})$, sodass $\phi|_{\Delta}$ stetig ist, immer

$$\phi(\Delta) \subseteq \sigma([\int \phi dE]|_G).$$

Hinweis: Nehmen Sie an, dass $\phi(x) \in \rho([\int \phi dE]|_G)$ für ein $x \in \Delta$. Zeigen Sie, dass dann auch $\phi(y) \in \rho([\int \phi dE]|_G)$ für alle y aus einer kompakten Umgebung Δ' von x. Wie stehen $\rho([\int \phi dE]|_G)$ und $\rho([\int \phi dE]|_{G'})$ mit $G' := E(\Delta')H$ in Verbindung?

4. Sei $E:\mathcal{A}\to\mathcal{B}(H)$ ein Spektralmaß für $\langle\Omega,\mathcal{A},H\rangle$ und $\phi\in B(\Omega,\mathcal{A})$. Man zeige, dass $\lambda\in\sigma_p(\int\phi dE)$ (Punktspektrum) genau dann, wenn $E(\{t\in\Omega:\phi(t)=\lambda\})\neq 0$. Dabei gilt ran $E(\{t\in\Omega:\phi(t)=\lambda\})=\ker(\lambda I-\int\phi dE)$.

Zeigen Sie weiters: Ist $T \in B(H)$ normal und ist E das zu T gehörige Spektralmaß, und liegt $\lambda \in \sigma(T)$ isoliert, dann folgt $\phi(\lambda) \in \sigma_p(\int \phi dE)$ für jedes beschränkte, messbare $\phi : \mathbb{C} \to \mathbb{C}$.

5. Mit der Notation aus dem vorherigen Beispiel zeigen Sie, dass $\int \phi dE$ genau dann kompakt ist, wenn

$$\forall \epsilon > 0 \Rightarrow \dim \operatorname{ran} \left(E(\{t \in \Omega : |\phi(t)| \ge \epsilon\}) \right) < \infty.$$

Was besagt diese Äquivalenz, wenn $\Omega = \mathbb{C}$ für einen normalen $T \in B(H)$ und wenn E das zu T gehörige Spektralmaß ist.

Zeigen Sie damit, dass $(K^*K)^{1/2}$ kompakt ist, wenn K ein kompakter Operator auf H ist.

- 6. Geben sie ein Beispiel eines selbstadjungierten und daher auch normalen $T \in B(H)$ an, sodass H keine ONB bestehend aus Eigenvektoren von T hat. (Hinweis: Multiplikationsoperator auf einem $L^2(\mu)$ für ein geeignetes μ .)
 - Zeigen Sie weiters, dass für jeden kompakten und normalen Operator $T \in B(H)$ es eine ONB von H bestehend aus Eigenvektoren gibt.
- 7. Sei $H = \ell^2(\mathbb{N})$ und $T : \mathfrak{D} \to \ell^2(\mathbb{N})$ mit $T((x_n)_{n \in \mathbb{N}}) = (n \cdot x_n)_{n \in \mathbb{N}}$, wobei $\mathfrak{D} = \{(x_n)_{n \in \mathbb{N}} \in \ell^2(\mathbb{N}) : (n \cdot x_n)_{n \in \mathbb{N}} \in \ell^2(\mathbb{N})\}$. Zeigen Sie, dass T ein abgeschlossener Operator ist, dh. dass der Graph von T als Teilmenge von $H \times H$ abgeschlossen ist.
- 8. Sei *A* eine Banachalgebra und $B \subseteq A$ eine kommutative Unteralgebra. Man zeige, dass dann auch \overline{B} kommutativ ist.

Weiters sei H ein Hilbertraum und $\mathfrak A$ eine kommutative Unteralgebra von B(H). Zeigen sie, dass der Abschluss $\overline{\mathfrak A}^{w}$ in B(H) bezüglich der schwachen Operatortopologie eine kommutative Banachalgebra ist.

Die schwache Operatortopologie ist die von den Funktionalen $A \mapsto (Ax, y)$ von B(H) erzeugten initiale Topologie. Insbesondere ist $A \in \overline{\mathfrak{A}}^{w}$ genau dann, wenn es ein Netz $(A_{i})_{i \in I}$ gibt, sodass $(A_{i}x, y) \to (Ax, y)$ für alle $x, y \in H$.

Hinweis: Zeigen Sie zuerst, dass für $A \in \mathfrak{A}, B \in \overline{\mathfrak{A}}^w$, gilt, dass $AB = BA \in \overline{\mathfrak{A}}^w$!