ÜBUNGEN NICHTLINEARE PDES IM SS 2012 BLATT 7

(BESPRECHUNG AM MITTWOCH, 16. MAI, 17:45-19:15 IM SE 101A)

SABINE HITTMEIR

Aufgabe 1. Sei $\Omega \subset \mathbb{R}^n$ $(n \geq 1)$ ein beschränktes Gebiet mit $\partial \Omega \in C^1$ und sei $u_0 \in L^{\infty}(\Omega)$ mit $0 \leq k \leq u_0 \leq K$ in Ω . Sei u eine schwache Lösung von

$$u_t = \Delta u + u^+(\alpha - u)$$
 in Ω , $t > 0$,
 $u(0, x) = u_0(x)$, in Ω
 $u = 0$ auf $\partial \Omega$, $t > 0$,

wobei $u^+ = \max\{0, u\}$ und $\alpha > 0$. Zeigen Sie: Es existieren $m \ge 0$ und M > 0 mit

$$m \le u \le M$$
 in Ω , $t > 0$.

Aufgabe 2. Seien $\Omega \subset \mathbb{R}^n$ ein beschränktes Gebiet mit meas $(\Omega) > 0$ und $f \in L^{\infty}(\Omega)$. Zeigen Sie:

$$\lim_{p \to \infty} ||f||_{L^p(\Omega)} = ||f||_{L^\infty(\Omega)}.$$

Aufgabe 3. Sei $\Omega \subset \mathbb{R}^n$ $(n \leq 3)$ ein beschränktes Gebiet mit $\partial \Omega \in C^1$, $\varepsilon > 0$, und sei u eine klassische Lösung der Allen-Cahn-Gleichung

$$u_t = \varepsilon \Delta u - \frac{1}{\varepsilon} (u^2 - 1)u$$
 in Ω , $t > 0$,
 $\nabla u \cdot \nu = 0$ auf $\partial \Omega$, $t > 0$,
 $u(0, x) = u_0(x)$ in Ω .

Definiere das Funktional

$$E[u](t) = \frac{\varepsilon}{2} \int_{\Omega} |\nabla u|^2 dx + \frac{1}{4\varepsilon} \int_{\Omega} (u^2 - 1)^2 dx.$$

Zeigen Sie:

- (i) Für alle t > 0 gilt $dE/dt \le 0$.
- (ii) $E: H^1(\Omega) \to \mathbb{R}$ ist schwach unterhalbstetig, d.h. $u_k \rightharpoonup u$ schwach in $H^1(\Omega)$ impliziert $E[u] \leq \liminf_{k \to \infty} E[u_k]$.

sabine.hittmeir@tuwien.ac.at.