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Exercise 1. Consider the nonlinear Schrödinger-equation

iψt + ψxx + ψ|ψ|2 = 0 for (x, t) ∈ R× R .

(i) Search for soliton-solutions of the form ψ = rei(θ+nt) with real-valued functions
r(x−ct) and θ(x−ct), where c and n are real constants. Derive ordinary differential
equations for θ and r.

(ii) Show that, for S = r2 and F (S) = S3 − 2(n− 1
4
c2)S2 + BS + 1

2
A2 with arbitrary

real integration constants A and B,

θ′ = 1
2
(c+ A

S
) and (S ′)2 = −2F (S)

hold.

(iii) Consider the special case A = B = 0. Find the roots of F (S) and the corresponding
periodic solutions ψ.

(iv) Show that a ’solitary-wave’-solution of the form

ψ(x, t) = aei(
1
2
c(x−ct)+nt)( cosh(a(x−ct)√

2
)
)−1

exists.

Exercise 2. Suppose R > 0, 1 < p <∞ and r > 2. Consider the subset

Y :=
{
u ∈ Ct(R;L2

x(Rn)) ∩ Lrt (R;Lp+1
x (Rn)) | ‖u‖L∞

t (H1
x)

+ ‖u‖Lr
t (W

1,p+1
x ) ≤ R

}
of the Banach-space Ct(L

2
x)∩Lrt (Lp+1

x ) with norm ‖u‖L∞
t (L2

x)
+ ‖u‖Lr

t (L
p+1
x ). Show that,

Y is a closed subset of Ct(L
2
x) ∩ Lrt (Lp+1

x ), although Y is defined via a stronger norm.

Hint: use the following theorem.

Theorem 1 (Banach-Alaoglu-Bourbaki). Let X be a normed space, the dual X ′

is hence also a normed space (with the operator norm). Then the closed unit ball of X ′

is compact with respect to the weak* topology.



Exercise 3. Show that the Schrödinger-Poisson-equation{
iψt + ∆ψ + f(ψ) = 0 for (x, t) ∈ R3 × R ,
ψ(t = 0) = ψ0 ∈ H1(R3) ,

with f(ψ) = 1
4π

(|ψ|2 ∗ 1
|x|)ψ, has a unique mild solution ψ ∈ C(R, H1(R3)).

Remark: V [ψ] := 1
4π

(|ψ|2 ∗ 1
|x|) solves the Poisson-equation −∆V = |ψ|2.

Hint: Show via the generalized Young-inequality (Lemma 4.5) and the Sobolev-
imbedding W 1,p(Rn) ↪→ CB(Rn) for p > n, that f : H1(R3) → H1(R3) is a local
Lipschitz-continuous function. Use Theorem 4.6. Finally, show that

‖ψ(t)‖L2(R3) and E(Ψ(t)) = ‖∇ψ(t)‖2L2(R3) + 1
2
‖∇V (t)‖2L2(R3)

are conserved quantities and deduce the necessary a-priori-estimates.

Solutions will be discussed on Monday 19th of June 2017.


