
Winfried Auzinger Sommersemester 2014
Dirk Praetorius 4.–6. Juni 2014

Übungsaufgaben zur VU Computermathematik

Serie 9

Eine Sammlung verschiedener Problemstellungen. Die Angaben zu manchen der Aufgaben sind relativ
ausführlich geraten, zwecks Erläuterung des anwendungsorientierten Hintergrundes. Es sieht daher nach
mehr Arbeit aus als es wirklich ist.

Exercise 9.1. Consider the trivial differential equation y′(t) = 0 with initial value y(0) = 0, such that
the solution is y(t) ≡ 0. (This serves as a simple model problem for the following stability investigation.)
We approximate the solution by the three-step recursion 1

yn :=
18

11
yn−1 −

9

11
yn−2 +

2

11
yn−3 , n = 3, 4, . . . (1)

We need three initial values y0, y1, y2. For y0 = y1 = y2 = 0 the solution is yn ≡ 0. Now assume that
the initial values are perturbed to be 6= 0, e.g., by rounding errors. We ask: What is the effect of such a
perturbation?

a) Exercise 7.5 (two-step recursion) readily generalizes to the case of the present three-step recursion.
Determine λ, λ2 and λ3 such that the general solution of (1) (for arbitrary initial values) is given by

yn = c1 λ
n
1 + c2 λ

n
2 + c3 λ

n
3

with arbitrary constants c1, c2, c3.

Hint: You can guess one of the solutions (λ1) and reduce the problem to a quadratic equation. Or
simply use solve.

b) Is such a solution stable, i.e., does it remain uniformly bounded for n → ∞? (You can answer this
question by just inspecting the the λi; however, λ2, λ3 form a complex conjugate pair. If you are not
sure, plot the absolute values of the λni for increasing n.)

Exercise 9.2. Use the plots package:

a) The function animate can be used to produce videos, i.e., a sequence of plots depending on a para-
meter. After defining the corresponding plot structure, rendering of the animation is performed in an
interactive way. Consult ? animate (look at the examples). Use animate to visualize the behavior of
the functions

(
1 + x

n

)n
for x ∈ [0, 5] and n = 1, 2, . . . (n is the parameter for the animation).

b) An animation of the evolution of a function can be generated using animatecurve. Show some nice
example.

c) Another way of generating a video is to produce several plot structures and to display them in an
animated way, using display with option insequence=true. Choose a function f(t) generate plots
on intervals [0, T] with increasing values for T . Use the plot option filled=true. Then, use display

with option insequence=true to animate these plots. This provides a visualization of the behavior of∫ T
0
f(t) dt with increasing T .

1 This recursion emerges if one approximates y′ in a similar way as in 7.7. A related recursion can be used to approximate
more general differential equations.

d) Also check animate3d and show some nice example. You may also try to combine several calls of
plot3d in combination with display3d(...,insequence=true).

Exercise 9.3. Consider the trefoil (Kleeblatt) curve implicitly defined by the equation

y
(
y2 − 3x2

)
=
(
x2 + y2

)2
.

a) Use plots[implicitplot] to draw the curve. Produce a nice-looking plot by utilizing the options
thickness and numpoints.

b) For an explicit parametric representation of the trefoil curve we use polar coordinates. Substitute
x = r cosϕ, y = r sinϕ, solve the trefoil equation for r using solve, and simplify the result. This gives
r = r(ϕ) as a function of ϕ, and x(ϕ) = r(ϕ) cosϕ, y(ϕ) = r(ϕ) sinϕ.

c) Use plots[animatecurve] to draw the curve once more. (Since we are now using the parametric
representation, you have to use animatecurve in a way analogous as described in ? plot/parametric.)

d) Compute the arclength of the trefoil curve according to the formula∫ ?

ϕ=0

√
x′(ϕ)2 + y′(ϕ)2 dϕ .

Be careful: What is the correct upper limit for the integral? (Look at your plot from b).)

The integral is not elementary; use evalf to evaluate it numerically. (The correct value is ≈ 6.682.)

e) Compute the area of the trefoil by integrating its polar representation over one of the foils, e.g., the
first one,∫ ?

ϕ=0

∫ |r(ϕ)|
ρ=0

ρ dρ dϕ .

This integral is elementary (but requires some work doing it by hand). (The correct value for the area
of the trefoil is π/4.)

Exercise 9.4.

a) Explain, by be means of a small example worksheet, the use of map and map2.

b) Check the help page ? index and look for packages. Here you see a complete list of available packages.
As an example, we look at the small package heap. A heap is an data structure for dynamically storing
objects from a (in practice: large) ordered set, in such a way that efficient direct access to the maximal
element is provided. Any object my be inserted into an existing heap. Look at the example provided on
the help page. Produce a small worksheet, use with(heap); and generate a heap for storing integers.
Generate the empty heap with ordering function f:=(a,b)->evalb(a<b). The heap will now internally
store the elements in sorted order. Then, insert a number of integers in random order and extract the
maximal element.

Remark: In addition, the dynamical data structures queue and stack are available for FIFO (First In,
First Out) access and LIFO (Last In, First Out) access, respectively. Usage is similar as for heaps.

Exercise 9.5. Assume you want to do symbolic computations with abstract objects for which multipli-
cation is not commutative. (Think of the algebra of real or complex n × n - matrices.) Noncommutative
multiplication is supported in the package Physics.

By

with(Physics):

Setup(noncommutativeprefix={A,B,C}):

Setup(mathematicalnotation=true):

Setup(noncommutativecolor=green):

you activate the package, declare the variables A,B,C as non-commutative, and activate green color for the
display of non-commutative objects. The Physics command 2 Commutator(A,B) computes the so-called
commutator [A,B] of A and B,

[A,B] := AB −BA .

a) Use Commutator and 3 Simplify to verify the fundamental identities

[AB,C] = A [B,C] + [A,C]B

and

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0 (Jacobi identity).

b) For the definition of the matrix exponential 4 eA, see 8.8. In applications, something like et(A+B) (with
t ∈ R and two matrices A,B) may be hard to compute numerically, while etA and etB are simpler to
compute. We consider the Lie-Trotter approximation

L(t) := etA etB ≈ et(A+B) .

(Think of t as a small time step.) We now study the structure of the error of this approximation and
its dependence on t for t→ 0. Consider the quadratic Taylor polynomials 5

TA(t) = I + t A+
t2

2
A2 , and TB(t), TA+B(t) ,

and consider TA(t)TB(t) − TA+B(t). Use Simplify to verify that that the leading term (with lowest
power of t) is O(t2) and identify this leading term as commutator expression.

(Remark: If A and B commute, i.e., [A,B] = 0, then the Lie-Trotter approximation is exact.)

c) The Strang approximation

S(t) := et/2A etB et/2A ≈ et(A+B)

is is of a better quality. Proceed analogously as in b), considering the Taylor polynomials TA/2(t), TB(t)
and TA+B(t) of degree 3. Use Simplify to verify that that the leading term of TA/2(t)TB(t)TA/2(t)−
TA+B(t) is O(t3). Verify that it admits the representation

t3
(

1
24

[[A,B], A] + 1
12

[[A,B], B]
)
.

2 You may define an abbreviation for this, e.g., alias(K=Commutator).
3 Simplify is the simplification command from the Physics package.
4 Remark: For some given vector u0, the vector-valued function u(t) = etA u0 is the solution of the vector-valued differential

equation u′(t) = Au(t), u(0) = u0.
5 Do not use taylor – this is not correctly supported in Physics. (Bug?)

Exercise 9.6. Some advanced programming features:

• The overload command allows you to split the implementation of a command operating on different
types of arguments into separate procedures. The basic syntax is overload(P), where P is a list of
procedures.

A simple example: Assume you want to represent matrix left division A\B := A−1 · B and scalar
division a−1 b by a single function backslash. This works as follows:

backslash := overload([

proc(A::Matrix,B::Matrix)

option overload:

return A^(-1).B

end proc,

proc(a::anything,b::anything)

option overload:

return a^(-1)*b

end proc

]):

The first branch only accepts arguments of type Matrix. The data type anything means ‘any possible
type’, i.e., the second procedure acts as a default.

Such a construction is often more useful than embedding various if-constructs into a single proce-
dure.

• The try ... catch ... end try construct allows you to ‘protect’ parts of your code, with a con-
trolled error handling by the catch-branch if the try-branch fails. A simple example:

try:

M := Matrix(m,m):

N := Matrix(n,n):

catch:

error "One of the matrix dimensions has not been correctly specified."

end try:

This is often more useful than trying to avoid in advance, by various if-constructs, that such an
error occurs.

a) Verify the above simple example for the use of overload, and extend it by a try ... catch ...

end try construct which, for the case that when dividing by A or a, respectively, an error occurs, the
catch-branch forces a return of FAIL.

b) Extend backslash in such a way that for a square matrix A and a vector b the solution x of the linear
system Ax = b is returned. Use LinearAlgebra[LinearSolve].

Exercise 9.7. We implement a method for computing the matrix exponential eA based on the spectrum
of A, which is practically applicable if the dimension of A is small.

a) For pairwise distinct nodes x1, . . . , xn and values y1, . . . , yn there exists a unique interpolating polyno-
mial of degree ≤ n − 1 with p(xi) = yi, i = 1 . . . n. p(x) can be computed in different ways. We use
the following method: Define the Lagrange polynomials

Li(x) :=
(x− x1) . . .′ (x− xn)

(xi − x1) . . .′ (xi − xn)
, i = 1 . . . n,

where . . .′ means that the product does not include the index i. The Li(x) satisfy Li(xj) = δi,j, which
in turn implies the representation

p(x) =
n∑
i=1

yi Li(x) .

Design a procedure interp(X,Y) which expects two lists X and Y as its arguments and returns the
function p(x).

Hint: This is a floating point algorithm. Generate the formula for p(x), use simplify, collect(...,x)

and evalf, and return unapply(...,x).

b) Let A ∈ Rn×n be a diagonalizable matrix with n distinct eigenvalues λi, i = 1 . . . n. Let p(x) =
c0 + c1 x+ . . .+ cn−1 x

n−1 be the polynomial of degree ≤ n−1 satisfying p(λi) = eλi i = 1 . . . n (see a)).
Then,

eA = p(A) = c0 I + c1A+ . . . cn−1A
n−1 .

Implement this in form of a procedure mexp(A). Use LinearAlgebra[Eigenvalues](evalf(A)) to
compute the λi.

Test a 3× 3 example and compare with the result provided by

LinearAlgebra[MatrixExponential](evalf(A)).

Hint: This is a floating point algorithm. Evaluate p(A) using the Horner scheme (see 8.8).

Exercise 9.8. Assume that a function f(t) satisfies f(0) = f ′(0) = . . . = f (n−1)(0) = 0 for some n ∈ N.
Then, by Taylor’s theorem,

f(t) =
tn

n!
f (n)(0) +O(|t|n+1) for t→ 0 .

For such a function f , we can approximate the integral∫ t

0

f(s) ds

over a (small) interval [0, t] by∫ t

0

tn

n!
f (n)(0) dt =

tn+1

(n+ 1)!
f (n)(0) ≈ t

n+ 1
f(t) , (2)

which involves only a single evaluation of f .

We now consider a a practical application of this integral approximation: Assume that we are approximating
the function 6 et by a rational function r(t). We choose a Padé approximation (see 8.8),

r(t) = numapprox[pade](exp(t),t,[3,3])

6 This is a baby example. In a practical setting we would e.g. consider an approximation of the matrix exponential etA,
which may be difficult to compute exactly if A has a larger dimension.

a) Verify using taylor that r(t) = et +O(|t|7) for t→ 0.

b) The function et is the solution of the differential equation y′(t) − y(t) = 0, y(0) = 1. Compute the
residual of r(t) with respect to this differential equation, i.e., the rational function δ(t) := r′(t)− r(t).
Verify using taylor that δ(0) = δ′(0) = . . . = δ(5)(0) = 0 and δ(6)(0) 6= 0, i.e., δ(t) = O(|t|6) for t→ 0.

c) Due to e0 = r(0) = 1 and by definition of δ(t), the approximation error ε(t) := r(t)− et satisfies

ε′(t) = ε(t) + δ(t) , ε(0) = 0 ,

which implies

ε(t) =

∫ t

0

e(t−s) δ(s)︸ ︷︷ ︸
=: f(s;t)

ds .

Verify that the integrand f(s; t) (considered as a function of s for fixed t) satisfies f(0; t) = f ′(0; t) =
. . . = f (5)(0; t) = 0 and f (6)(0; t) 6= 0.

d) In order to obtain an easily computable estimate for the error ε(t) = r(t) − et (control of accuracy!),
we approximate its integral representation by the quadrature formula (2), i.e., we compute

ε̃(t) =
t

7
f(t; t) =

t

7
δ(t) ≈ ε(t).

Verify using taylor that

ε̃(t)− ε(t) = O(|t|8) for t→ 0 .

This shows that the error estimate is very precise, with a relative deviation of size O(t). Visualize this
by plotting the true error ε(t) = r(t)−et and its estimate ε̃(t) for t = 0 . . . 1. Use also plots[logplot]

for a better visualization of the asymptotic behavior for t→ 0.

