Winfried Auzinger Sommersemester 2016
Gregor Gantner 9. Marz 2016
Alexander Haberl
Dirk Praetorius Ubungen zur Vorlesung

Computermathematik

Serie 2

Aufgabe 2.1. Write a function which calculates and returns for a vector x € C™ and some
1 <p < oo the £)-norm

fallp i= (3 kas?) ™"
j=1

The function has to be implemented in two different ways: First, avoid loops and use appropriate
vector functions and arithmetic instead; second, use loops and scalar arithmetic.

Aufgabe 2.2. Write a function tensor which returns for n € N the chessboard-tensor B €
NanXn With

B

{O if j+k+4 ¢ even
jke —

1 ifj+k+¢odd

The function has to be implemented in two different ways: First, avoid loops and use appropriate
vector functions and arithmetic instead; second, use loops and scalar arithmetic.

Aufgabe 2.3. Write a function dominant which checks if A € C"*" is diagonal dominant,
ie.,

n
Z |Aji| < |Aj;| forall je{l,...,n}.
=
If A is diagonal dominant, the function should return 1, otherwise 0. Think about how you can
test your code! What are suitable test-examples?

Aufgabe 2.4. Let p(x) = Z;'L:o a;jx’ be a polynomial with coefficient vector a € C" 1. Write
a MATLAB-function which takes a and returns the coefficient vector of the derivative p’. The
function has to be implemented in two different ways: First, avoid loops and use appropriate
vector functions and arithmetic instead; second, use loops and scalar arithmetic. Your function
should work for column and row vectors a and should always return a column vector; see, e.g.,
help reshape Think about how you can test your code! What are suitable test-examples?

Aufgabe 2.5. Let p(x) = Z?:o ajxj be a polynomial with coefficient vector a € C"*1.

Let # = (2;1) € CM*N be a matrix of evaluation points. Write a MATLAB-function which
calculates and returns the evaluation matrix (p(:cjk)) € CM*N_ Your function should work for

column and row vectors a. The function has to be implemented in two different ways: First,
avoid loops and use appropriate vector functions and arithmetic instead; second, use loops and
scalar arithmetic. Think about how you can test your code! What are suitable test-examples?

Hint: You can use reshape to reduce the case of a matrix = to the case of a vector. Note that
the evaluation points can be complex-valued.

Aufgabe 2.6. Write a MATLAB-function which calculates for given polynomials p(z) and
q(r) the result r(z) = p(x) + q(x) and returns the coefficient vector » € C"*1. r(x) should
be a polynomial of minimal degree, i.e., for the leading coefficient there holds r,;1 # 0. The
function has to be implemented in two different ways: First, avoid loops and use appropriate
vector functions and arithmetic instead; second, use loops and scalar arithmetic. Think about
how you can test your code! What are suitable test-examples?

Aufgabe 2.7. The integral ff f dx of a continuous function f : [a,b] — R can be approximated
by so called quadrature formulas

b n
/ fdx%ijf(xj),
a =1

where one fixes some vector x € [a,b]” with 21 < -+ < z,, and approximates the function f by
some polynomial p(x) = Z?Zl a;jz?™! of degree < n — 1 with p(x;) = f(x;) forall j =1,...,n.
The weights w; can be calculated by the assumption

n

b
/ gdr = Z w;q(x;) for all polynomials g of degree <n — 1.
a =1

This is equivalent to the solution of the linear system

pr+1 aF+1 b n
— :/xkdx:ijx? fir alle k=0,...,n— 1.
a]_1

k+1 k+1

Why is this the case? Write a function integrate which takes the (column or row) vector
x € [a,b]” and the function value vector f(x), and which returns the approximated value of
the integral. Therefore, build the linear system as efficiently as possible and solve it with the
backslash-operator. With the aid of the resulting vector w € R” one obtains the approximated
integral as scalar product with the vector f(z). Think about how you can test your code! What
are suitable test-examples? Avoid loops and use appropriate vector functions and arithmetic
instead.

Aufgabe 2.8. Let L € R"™" a lower triangle matrix with entries ¢;; # 0 for all j =1,...,n,
i.e., L has the form

2% 0 0
U1 la2 0 0

L = . .
bpo11 lpo12 - Apip-1 O

Enl €n2 o En,nfl énn

Because of det(L) = [[_; £;; # 0), L is invertible if and the inverse can be calculated recursively
as follows: We write L in the block form

L1 0
L =
<L21 L22>
with Li; € RP*P Loy € RY*P and L9y € R9%Y, where p + g = n. Usually one chooses p = n/2

for even n and p = (n — 1)/2 for odd n. Note that Li; und Log are again regular lower triangle
matrices. Elementary calculations show that the inverse has the block form

_L2_2 L21L1_1 L2_2

Write a function invertL, which L~! recursively calculates the inverse as described. You can
test your function with the aid of the function inv. Avoid loops and use appropriate vector
functions and arithmetic instead.

