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Exercise 7.1: Recursive computation of parameter-dependent integrals.

a)

b)
)

Use integration by parts (manually) to derive a recursion w.r.t. n for the integrals
I, ::/x”e”dw (A#0, n € Np),
and implement this recursion in form of a recursive procedure IR(x,n). Compare your results with the results delivered
by int.
Remark: Maple knows an explicit expression for I,, for general n (check).
Does a) provide the correct answer when taking the limit A — 0 ¢

Same as in a), for

Exercise 7.2: Solution of linear two-step recursions.

a)

b)

)

Consider the two-step recursion

Ty i =ATp_1+bTp_o, n=223,4,... (R)
with given a,b € R. We wish to find the general form of the solution. To this end we use the ansatz

Ty = A"

with some (unknown) parameter A and plug it into (R). Now it is easy to see that there are two possible values A = \;
and A = Ay such that the ansatz works (check).

Use Maple to express A1 and Ay in terms of the arbitrary parameters a and b. (Depending on a and b, the solution may
be real or complex).

Then, the general solution of recursion (R) is given by
C1 )\? + co )\g
with arbitrary constants ci, co.

However, there is a special case where the solution looks different. You may find out how the general solution looks like
in this special case. (If not, don’t worry.)

Design a procedure twostep(a,b,x0,x1,n) which delivers an expression depending onn (n =0,1,2,3,4,...) for the solution
Ty, for given starting values x0 and x1.

Hint: Use solve to determine the respective constants ¢; and co. What happens in the special case mentioned in a) ?

Generate an explicit formula for the Fibonacci numbers F,, defined by Fy =0, F1 =1, and

FnZ: n—1+Fn—2a 7’7,:2,3,4,...



Exercise 7.3: Facing the dewvil.

a) Consider the sequence of continuous functions!6 D,,: [0,1] — [0, 1], recursively defined by D; () := x and

%Dn_l(3a:)7 0<z< %,
D, (z) = %7 % <z< %7
s(1+Dp1(32-2), <2<l

for n > 1.

Implement these functions in form of a recursive procedure Devil (x,n) and produce plots for several values of n.

Note that it makes no sense to call Devil(x,n) with a numerical value n but unspecified x. Why? As a consequence,
you must not pass Devil(x,n) to the plot command, but ’Devil(x,n)’. Ezplain.

b) Include option remember to your procedure from a) and compare execution times (use time()). Do you observe a
difference?

Exercise 7.4: A special class of matrices.

a) A quadratic matrix A is called circulant if it is of the form

aq (07%% ap—1 QAp—2 ... a2
as aq Qp Ap—1 ... as
as a9 aq (47%% ... Qg
A= as  as as a1 ... as
an Gp-1 Aap—2 Gp-3 ... Q]

Design a procedure iscirculant(A) which expects a quadratic matriz as its argument and which returns true if it is
circulant and false otherwise.

b) Circulant matrices are examples of ‘data-sparse’ matrices: A circulant matrix is uniquely defined by its first column.

Assume that a vector ¢ represents a circulant matrix A, namely via its first column. Design a procedure which expects ¢
and another vector x as its arguments and which computes the matriz-vector product A - x in an efficient way, without
explicitly building the matriz A.

Exercise 7.5: Divided differences.

For a function f(z) and a given set of pairwise distinct values (nodes) {x1,...,x,}, the so-called divided differences of f
with respect to the x; are defined recursively as
f(xj) for j = ka
f[xjw"u‘rk] = f[xj+1,...,$k]7f[$j,...,17k_1] fOI‘j<k.
Tk — Ty

a) Implement the evaluation of the divided differences by means of a recursive Maple procedure realizing the mapping (j, k) —
flxj, ..., xx] for a function f and a list of nodes x; :

dd := proc(j,k,f,nodes)
Example: The call dd(1,3,sin, [x[1],x[2],x[3],x[4]1]) returns
sin(zs) —sin(z2)  sin(zs) —sin(x1)

Tr3 — T2 To — I
I3 — I

b) Use a) to verify by examples the product formula

k
(f-@)ajs-ael =Y flag o] - glwe, . wi
=

c) Verify forn =1,2,3,4,... that for an arbitrary polynomial p(z) of degree n and arbitrary nodes x1,...,T 1 we havel”

16 Remark: The limiting function f(z) = 1i_>m fn(z) is continuous and it is differentiable almost everywhere, with derivative 0. The graph of
n (oo}
the function f is called Devil’s staircase.

17 Note that an empty product is 1.



n+1

p(z) = Z ple1, ..., xk] - (. —x1) - (v — 2—1)

k=1

Remark: This is called the Newton representation of the polynomial. It is used in interpolation algorithms.

Exercise 7.6: Confluent divided differences.

Within the setting of Exercise 7.5, we now drop the assumption that the nodes z; are pairwise distinct. We define

f(x5) for j =k,
e o] = flojen, o] — flog, .o, 2p—1] for j <k andz; £z (non-confluent case),
j, ceey = xk _ xj
lirré flojsn s oet gg = flzgs ] for j <k and x; =z, (confluent case).
e—

This is well-defined if f has a sufficient high degree of differentiability (depending on the ‘amount of confluence’).

a) Implement the evaluation of the confluent divided differences by means of a recursive Maple procedure realizing the mapping
(4, k) = flzj, ..., zi] for a function f and a list of nodes x; :

cdd := proc(j,k,f,nodes)
Example: The call cdd(1,3,f, [x[1],x[2],x[2]]) returns

D(f)az) - LI

T2 — T1

b) Verify by examples that the product formula

k
(f-Plzjs- - zi] = flzj, -z - glze, - - - zx)
(=]
remains valid.
c) What is flx,..., x]?
——
n times

d) Also identity 7.5 c¢) remains valid. What does it mean for x1 =z = ... = Tpi1 ?
e) Verify by examples that the value of f|xj, ..., xx] is invariant under any permutation of the nodes ;.

Exercise 7.7: A two-dimensional integral.

Let an arbitrary triangle A = P, P, P3 C R? be given, with vertices P; = (zj,y;). To compute the integral of a real-valued
function f(x,y) defined over A, we represent points the (z,y) € A in the form

€z 37(5,77)] |:x1:| {332—331} |:JU3—$1:|
= = + + , 0<¢E+n<1
[ Yy } [ y(&,m) Y1 ¢ Y2 — Y1 K Ys — Y1 §+m
with coordinates (§,71) € Ay, where A,qf is the simple ‘reference triangle’ with vertices (0,0), (1,0), and (0, 1). Note that
(33(0, O)a y(07 O)) = (331, yl)a ($(17 0)7 y(la O)) = (an y2)7 and (x(07 1)a y(oa 1)) = (I37 yS)

Applying the 2-dimensional substitution formula for integrals, we can now express the integral of f over A by an integral
over Aper:

// fzydyd:r//ref (&,m)| £(2(€,m), (€, m)) dnde

with the Jacobian determinant 6(£,n) of the coordinate transformation (&,7n) — (z,y). In our case, 6(§,n) is constant:

5(&m) =0 = (v2—21)(ys — 1) — (w3 — 1) (y2 — Y1),

which corresponds to the ratio of the areas of the two triangles. Thus,

//A flay)dyde = 19| - /g_o / l_ogf(w(fm),y(f,n))dnd&.



a) Design a procedure triangleint (Delta,f) which computes the integral in this way. Specify the vertices of the triangle in
form of a list, [[x1,31], [x2, Y], [x3,y3]].

b) If the integral cannot be computed exactly, one approximates it by replacing f by a simpler function. A very basic variant
is to replace f by a an affine interpolant of the form

plz,y) =a+br+cy

chosen in such a way that p(z;,y;) = f(z;,y;), 7 =1,2,3. We claim that the integral over p can be written in the form
// p(x,y)dydr = Q(p) := w1 p(P1) + wa p(P2) +wsp(Ps) . Q)
A

Determine the parameters wi,ws,ws such that (Q) is indeed valid, first for A = A,er and then for an arbitrary A.

Hint: Using (Q) as an ansatz, consider the functions p(x,y) = 1, p(z,y) = «, and p(x,y) = y. This gives you 3 linear
equations for the coefficients w;.

Exercise 7.8: Your favorite package?
Look at the help page 7 index, and select packages. Here you see a complete list of available packages.
Choose one of them, have a closer look, and prepare a small demo of its basic features.

If you have no other special preference, you may take a closer look at plottools or geometry. Aficionados of combinatorics
may look at combinat (see also combstruct). And there are many, many more.




