
Winfried Auzinger Sommersemester 2018
Dirk Praetorius 16. Mai 2018

Übungsaufgaben zur VU Computermathematik

Serie 7

Exercise 7.1: Recursive computation of parameter-dependent integrals.

a) Use integration by parts (manually) to derive a recursion w.r.t. n for the integrals

In :=

∫
xn eλx dx (λ 6= 0, n ∈ N0),

and implement this recursion in form of a recursive procedure IR(x,n). Compare your results with the results delivered
by int.

Remark: Maple knows an explicit expression for In for general n (check).

b) Does a) provide the correct answer when taking the limit λ→ 0 ?

c) Same as in a), for∫
dx

(1 + x2)
n .

Exercise 7.2: Solution of linear two-step recursions.

a) Consider the two-step recursion

xn := a xn−1 + b xn−2 , n = 2, 3, 4, . . . (R)

with given a, b ∈ R. We wish to find the general form of the solution. To this end we use the ansatz

xn = λn

with some (unknown) parameter λ and plug it into (R). Now it is easy to see that there are two possible values λ = λ1

and λ = λ2 such that the ansatz works (check).

Use Maple to express λ1 and λ2 in terms of the arbitrary parameters a and b. (Depending on a and b, the solution may
be real or complex).

Then, the general solution of recursion (R) is given by

c1 λ
n
1 + c2 λ

n
2

with arbitrary constants c1, c2.

However, there is a special case where the solution looks different. You may find out how the general solution looks like
in this special case. (If not, don’t worry.)

b) Design a procedure twostep(a,b,x0,x1,n) which delivers an expression depending on n (n = 0, 1, 2, 3, 4, . . .) for the solution
xn for given starting values x0 and x1.

Hint: Use solve to determine the respective constants c1 and c2. What happens in the special case mentioned in a) ?

c) Generate an explicit formula for the Fibonacci numbers Fn defined by F0 = 0, F1 = 1, and

Fn := Fn−1 + Fn−2 , n = 2, 3, 4, . . .

Exercise 7.3: Facing the devil.

a) Consider the sequence of continuous functions 16 Dn : [0, 1]→ [0, 1], recursively defined by D1(x) := x and

Dn(x) :=


1
2 Dn−1(3x), 0 ≤ x < 1

3 ,

1
2 ,

1
3 ≤ x ≤

2
3 ,

1
2

(
1 +Dn−1(3x− 2)

)
, 2

3 < x ≤ 1.

for n > 1.

Implement these functions in form of a recursive procedure Devil(x,n) and produce plots for several values of n.

Note that it makes no sense to call Devil(x,n) with a numerical value n but unspecified x . Why? As a consequence,
you must not pass Devil(x,n) to the plot command, but ’Devil(x,n)’. Explain.

b) Include option remember to your procedure from a) and compare execution times (use time()). Do you observe a
difference?

Exercise 7.4: A special class of matrices.

a) A quadratic matrix A is called circulant if it is of the form

A =



a1 an an−1 an−2 . . . a2

a2 a1 an an−1 . . . a3

a3 a2 a1 an . . . a4

a4 a3 a2 a1 . . . a5

. . .
. . .

. . .
. . .

an an−1 an−2 an−3 . . . a1


Design a procedure iscirculant(A) which expects a quadratic matrix as its argument and which returns true if it is
circulant and false otherwise.

b) Circulant matrices are examples of ‘data-sparse’ matrices: A circulant matrix is uniquely defined by its first column.

Assume that a vector c represents a circulant matrix A, namely via its first column. Design a procedure which expects c
and another vector x as its arguments and which computes the matrix-vector product A · x in an efficient way, without
explicitly building the matrix A.

Exercise 7.5: Divided differences.

For a function f(x) and a given set of pairwise distinct values (nodes) {x1, . . . , xn}, the so-called divided differences of f
with respect to the xj are defined recursively as

f [xj , . . . , xk] :=


f(xj) for j = k,

f [xj+1, . . . , xk]− f [xj , . . . , xk−1]

xk − xj
for j < k.

a) Implement the evaluation of the divided differences by means of a recursive Maple procedure realizing the mapping (j, k) 7→
f [xj , . . . , xk] for a function f and a list of nodes xj :

dd := proc(j,k,f,nodes)

Example: The call dd(1,3,sin,[x[1],x[2],x[3],x[4]]) returns

sin(x3)− sin(x2)

x3 − x2
− sin(x2)− sin(x1)

x2 − x1

x3 − x1

b) Use a) to verify by examples the product formula

(f · g)[xj , . . . , xk] =

k∑
`=j

f [xj , . . . , x`] · g[x`, . . . , xk]

c) Verify for n = 1, 2, 3, 4, . . . that for an arbitrary polynomial p(x) of degree n and arbitrary nodes x1, . . . , xn+1 we have 17

16 Remark: The limiting function f(x) = lim
n→∞

fn(x) is continuous and it is differentiable almost everywhere, with derivative 0. The graph of

the function f is called Devil’s staircase.
17 Note that an empty product is 1.

p(x) ≡
n+1∑
k=1

p[x1, . . . , xk] · (x− x1) · · · (x− xk−1)

Remark: This is called the Newton representation of the polynomial. It is used in interpolation algorithms.

Exercise 7.6: Confluent divided differences.

Within the setting of Exercise 7.5, we now drop the assumption that the nodes xj are pairwise distinct. We define

f [xj , . . . , xk] :=



f(xj) for j = k,

f [xj+1, . . . , xk]− f [xj , . . . , xk−1]

xk − xj
for j < k and xj 6= xk (non-confluent case),

lim
ε→0

f [xj+1, . . . , xk + ε]− f [xj , . . . , xk−1]

ε
for j < k and xj = xk (confluent case).

This is well-defined if f has a sufficient high degree of differentiability (depending on the ‘amount of confluence’).

a) Implement the evaluation of the confluent divided differences by means of a recursive Maple procedure realizing the mapping
(j, k) 7→ f [xj , . . . , xk] for a function f and a list of nodes xj :

cdd := proc(j,k,f,nodes)

Example: The call cdd(1,3,f,[x[1],x[2],x[2]]) returns

D(f)(x2)− f(x2)− f(x1)

x2 − x1

x2 − x1

b) Verify by examples that the product formula

(f · g)[xj , . . . , xk] =

k∑
`=j

f [xj , . . . , x`] · g[x`, . . . , xk]

remains valid.

c) What is f [x , . . . , x︸ ︷︷ ︸
n times

] ?

d) Also identity 7.5 c) remains valid. What does it mean for x1 = x2 = . . . = xn+1 ?

e) Verify by examples that the value of f [xj , . . . , xk] is invariant under any permutation of the nodes x`.

Exercise 7.7: A two-dimensional integral.

Let an arbitrary triangle ∆ = P1 P2 P3 ⊆ R2 be given, with vertices Pj = (xj , yj). To compute the integral of a real-valued
function f(x, y) defined over ∆, we represent points the (x, y) ∈ ∆ in the form[

x
y

]
=

[
x(ξ, η)
y(ξ, η)

]
=

[
x1

y1

]
+ ξ

[
x2 − x1

y2 − y1

]
+ η

[
x3 − x1

y3 − y1

]
, 0 ≤ ξ + η ≤ 1

with coordinates (ξ, η) ∈ ∆ref, where ∆ref is the simple ‘reference triangle’ with vertices (0, 0), (1, 0), and (0, 1). Note that
(x(0, 0), y(0, 0)) = (x1, y1), (x(1, 0), y(1, 0)) = (x2, y2), and (x(0, 1), y(0, 1)) = (x3, y3).

Applying the 2-dimensional substitution formula for integrals, we can now express the integral of f over ∆ by an integral
over ∆ref :∫∫

∆

f(x, y) dy dx =

∫∫
∆ref

|δ(ξ, η)| f(x(ξ, η), y(ξ, η)) dη dξ

with the Jacobian determinant δ(ξ, η) of the coordinate transformation (ξ, η) 7→ (x, y). In our case, δ(ξ, η) is constant:

δ(ξ, η) ≡ δ = (x2 − x1)(y3 − y1)− (x3 − x1)(y2 − y1),

which corresponds to the ratio of the areas of the two triangles. Thus,∫∫
∆

f(x, y) dy dx = |δ| ·
∫ 1

ξ=0

∫ 1−ξ

η=0

f(x(ξ, η), y(ξ, η)) dη dξ .

a) Design a procedure triangleint(Delta,f) which computes the integral in this way. Specify the vertices of the triangle in
form of a list, [[x1, y1],[x2, y2],[x3, y3]].

b) If the integral cannot be computed exactly, one approximates it by replacing f by a simpler function. A very basic variant
is to replace f by a an affine interpolant of the form

p(x, y) = a+ b x+ c y

chosen in such a way that p(xj , yj) = f(xj , yj), j = 1, 2, 3. We claim that the integral over p can be written in the form∫∫
∆

p(x, y) dy dx = Q(p) := ω1 p(P1) + ω2 p(P2) + ω3 p(P3) . (Q)

Determine the parameters ω1, ω2, ω3 such that (Q) is indeed valid, first for ∆ = ∆ref and then for an arbitrary ∆.

Hint: Using (Q) as an ansatz, consider the functions p(x, y) = 1, p(x, y) = x, and p(x, y) = y. This gives you 3 linear
equations for the coefficients ωj .

Exercise 7.8: Your favorite package?

Look at the help page ? index, and select packages. Here you see a complete list of available packages.

Choose one of them, have a closer look, and prepare a small demo of its basic features.

If you have no other special preference, you may take a closer look at plottools or geometry. Aficionados of combinatorics
may look at combinat (see also combstruct). And there are many, many more.

