10. Übung

- 1. E(ntferntester)-P(unkt)-Voronoi-Diagramm: Bekanntlich ist das klassische Voronoi-Diagramm zu einer gegebenen Punktmenge $P = \{p_1, \ldots, p_n\}$ in der Ebene eine Partition der Ebene in Zellen, wobei die Zelle Z_p , $p \in P$, jene Punkte der Ebene beinhaltet, welche zu p kleineren Abstand haben als zu jedem anderen Punkt $p' \neq p \in P$.
 - Ähnlich definiert man das EP-Voronoi-Diagram dieses ist eine Partition der Ebene in Zellen, wobel Z_p , $p \in P$, jene Punkte der Ebene beinhaltet, welche zu p größeren Abstand haben als zu jedem anderen Punkt $p' \neq p \in P$.
 - (a) Skizzieren Sie das EP-Voronoi-Diagramm für drei Punkte in der Ebene, d.h. $P = \{p_1, p_2, p_3\}$. Überlegen Sie sich weiters, wie sich Ihr EP-Voronoi-Diagramm ändert, wenn Sie noch einen Punkt zu P hinzufügen.
 - (b) Begründen Sie allgemein, dass alle Zellen stets konvex sind und dass nur jene Punkte von P Zellen liefern, welche Eckpunkte der konvexen Hülle von P sind.
 - (c) Begründen Sie, dass alle Zellen des EP-Voronoi-Diagramms unbeschränkt sind und schließen Sie daraus, dass die Ecken und Kanten des EP-Voronoi-Diagramms einen Baum bilden.
 - (d) Zeigen Sie, dass das EP–Voronoi–Diagramm von m Punkten höchstens 2m-3 (beschränkte oder unbeschränkte) Kanten besitzt.
- 2. Überlegen Sie sich einen $O(n \log n)$ -Algorithmus, wie das EP-Voronoi-Diagramm konstruiert werden kann.
- 3. Test auf die Rundheit einer Punktmenge: Gegeben sei wieder eine n-elementige Punktmenge in der Ebene. Aufgabe ist es nun, zwei konzentrische Kreisscheiben k = B(m,r) und K = B(m,R) (B(x,y) bezeichne die Kreisscheibe mit Mittelpunkt x und Radius y) so zu finden, dass $P \subset K \setminus k$ und d = R r minimal wird je kleiner d, umso "runder" ist offenbar die Punktmenge.
 - Anmerkung: So kann praktisch die Rundheit von Werkstücken anhand zufälliger Meßpunkte gemessen werden.
 - (a) Seien k und K optimal und seien R_i der Rand von k, sowie R_a der Rand von K, d.h. R_i und R_a sind der innere bzw. der äußere (Rand-)Kreis des optimalen Torus. Argumentieren Sie, dass stets vier Punkte von P am Rand $R_i \cup R_a$ liegen, entweder
 - i. drei auf R_i und einer auf R_a ,
 - ii. jeweis zwei auf R_i und R_a oder
 - iii. drei auf R_a und einer auf R_i .
 - (b) Stellen Sie zu jedem drei Fälle einen Zusammenhang mit dem klassischen Voronoi- und dem E-P- Voronoi-Diagramm der Menge P her (genauer mit den Ecken bzw Kanten des jeweiligen Diagramms).
 - (c) Überlegen Sie sich, wie die Kenntnis aller Ecken der beiden Voronoi–Diagramme sowie die Kenntnis aller Schnitte von Kanten $c \cap c'$, wobei c aus dem klassischen und c' aus dem EP–Voronoi–Diagramm sind, genutzt werden kann, um in $O(n^2)$ Schritten m, r und R, d.h. die drei Parameter des optimalen Torus $K \setminus k$ zu bestimmen.
- X Das Letzte(außer Konkurrenz): Lösen Sie das Schifahrerbeispiel.