Übungsblatt 3 für "Diskrete und geometrische Algorithmen"

- 1.) (a) Lösen Sie die Rekursion T(1) = 2 und T(n) = T(n-1) + 2 für $n \ge 2$ exakt, indem Sie wiederholt in die Rekursion einsetzen, bis Sie T(n) erkennen. Verifizieren Sie Ihr Ergebnis mit der Substitutionsmethode.
 - (b) Lösen Sie die Rekursion T(1) = 2 und T(n) = 3T(n-1) + 2 für $n \ge 2$ exakt, indem Sie wiederholt in die Rekursion einsetzen, bis Sie T(n) erkennen. Verifizieren Sie Ihr Ergebnis mit der Substitutionsmethode.
- 2.) Lösen Sie die Rekursion T(1) = 1 und $T(n) = 3T(\frac{n}{2}) + n^2 + n$ für $n = 2^k \ge 2$ exakt, indem Sie wiederholt in die Rekursion einsetzen, bis Sie T(n) erkennen. Verifizieren Sie Ihr Ergebnis mit der Substitutionsmethode.
- 3.) (a) Verwenden Sie die Substitutionsmehtode um nachzuweisen, daß $T(n) = T(\lceil \frac{n}{2} \rceil) + 1$ asymptotisches Wachstum $O(\log n)$ hat.
 - (b) Falls T(n) die Rekursion $T(n) = 4T(\frac{n}{3}) + n$ erfüllt, so gilt laut Master-Theorem $T(n) = \Theta(n^{\log_3 4})$. Zeigen Sie, daß ein Beweis mittels Substitutionsmethode mit dem Ansatz $T(n) \leq c \, n^{\log_3 4}$ nicht funktioniert. Zeigen Sie das behauptete asymptotische Wachstum mittels Substitutionsbeweis, indem Sie einen geeigneten Term niedrigerer Ordnung in Ihrem Ansatz subtrahieren.
- 4.) Verwenden Sie eienn Rekursionsbaum, um eine asymptotische obere Schranke (d.h. ein O) der Rekursion

$$T(n) = T(n-a) + T(a) + n$$
, für $n > a$, $T(n) = 0$, für $n < a$,

für gegebenes $a \geq 1$ zu bestimmen. Verifizieren Sie Ihre Schranke mittels Substitutionsmethode.

5.) Verwenden Sie einen Rekursionsbaum um eine asymptotische obere Schranke für die Rekursion

$$T(n) = 4T(\frac{n}{2} + 2) + n$$

zu bestimmen. Verifizieren Sie Ihre Schranke mittels Substitutionsmethode.

6.) Verwenden Sie einen Rekursionsbaum um eine asymptotische obere und untere Schranke für die Rekursion

$$T(n) = 4T(\frac{n}{5}) + T(\frac{4n}{5}) + n$$

zu bestimmen. Verifizieren Sie Ihre Schranke mittels Substitutionsmethode.

7.) Finden Sie in den folgenden Beispielen asymptotische obere und untere Schranken für T(n) mittels Master-Theorem.

(a)
$$T(n) = 2T(\frac{n}{3}) + n \log n$$
.

(b)
$$T(n) = T(\frac{9n}{10}) + n$$
.

(c)
$$T(n) = 10T(\frac{n}{3}) + n^{1.2}$$
.

(d)
$$T(n) = 4T(\frac{n}{2}) + n$$
.

(e)
$$T(n) = 4T(\frac{n}{2}) + n^2$$
.

(f)
$$T(n) = 4T(\frac{n}{2}) + n^3$$
.

8.) Gegeben ist die "Divide and Conquer"-Rekursion

$$T(n) = aT(\frac{n}{b}) + f(n),$$

mit einer nichtnegativen Funktion f(n) mit asymptotischem Wachstum $\Theta(n^{\log_b a} \log n)$. Zeigen Sie für den Fall $n = b^k$, $k \in \mathbb{N}$, daß $T(n) = \Theta(n^{\log_b a} \log^2(n))$.