Analysis für Informatik und Wirtschaftsinformatik Übungsbeispiele

- 1) Man gebe eine Folge reeller Zahlen an, die als Häufungspunkte genau alle natürlichen Zahlen hat.
- 2) Man gebe eine Folge reeller Zahlen an, die als Häufungspunkte genau alle ganzen Zahlen hat.
- 3) Gibt es eine Folge reeller Zahlen, die als Häufungspunkte genau alle rationalen Zahlen hat?
- 4) Man finde alle Häufungspunkte der Folge $a_n = (-1)^n + \cos \frac{n\pi}{2} \ (n \ge 0)$.
- **5)** Man finde alle Häufungspunkte der Folge $a_n = \sin \frac{n\pi}{2} + (-1)^{n(n+1)/2}$ $(n \ge 0)$.
- 6) Man finde alle Häufungspunkte der Folge

$$a_n = \frac{\sqrt{n} \cdot \cos\left(\frac{n\pi}{2}\right)}{\sqrt{n} + \sin\left(\frac{n\pi}{2}\right)}, \qquad (n \ge 1).$$

- 7) Man zeige, dass die Folge $a_n = \frac{\sin n}{n} \ (n \ge 1)$ nur 0 als Häufungspunkt hat.
- 8) Man zeige, dass die Folge $a_n = \frac{\sin n + \cos n}{\sqrt{n}} \quad (n \ge 1)$ nur 0 als Häufungspunkt hat.
- 9–12) Man zeige, dass die Folge a_n konvergiert, indem man zu beliebigem $\varepsilon > 0$ ein $N(\varepsilon)$ angebe.

9)
$$a_n = \frac{\sin n + \cos n}{\sqrt{n}}$$
 10) $a_n = \frac{\sin n}{\sqrt[4]{n}}$

- 11) $a_n = \frac{\ln n}{n}$ Anleitung: Zeigen Sie, daß aus $\ln x < \frac{x}{2}$ die Ungleichung $\ln(n) < \sqrt{n}$ folgt. Die erste Ungleichung darf ohne Beweis verwendet werden.
- 12) $a_n = \frac{n}{4^n}$ Anleitung: Zeigen Sie zunächst $n < 2^n$.
- **13)** Sei $(c_n)_{n\in\mathbb{N}}$ eine beliebige reelle Folge. Man zeige, dass es zwei beschränkte Folgen $(a_n)_{n\in\mathbb{N}}, (b_n)_{n\in\mathbb{N}}$ gibt, die $c_n = \frac{a_n}{b_n}$ für alle $n\in\mathbb{N}$ erfüllen.
- **14)** Sei $(c_n)_{n\in\mathbb{N}}$ eine beliebige reelle Folge. Man zeige, dass es zwei Nullfolgen $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ gibt, die $c_n=\frac{a_n}{b_n}$ für alle $n\in\mathbb{N}$ erfüllen.
- **15)** Seien $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ zwei konvergente Folgen mit $\lim a_n = a$ und $\lim b_n = b$. Man zeige, dass die Folge $(c_n)_{n\in\mathbb{N}} = (a_n + 2b_n)_{n\in\mathbb{N}}$ auch konvergiert mit $\lim c_n = c = a + 2b$, indem man zu beliebigem $\varepsilon > 0$ ein $N(\varepsilon)$ angebe.
- **16)** Seien $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ zwei konvergente Folgen mit $\lim a_n = a$ und $\lim b_n = b$. Man zeige, dass die Folge $(c_n)_{n\in\mathbb{N}} = (3a_n b_n)_{n\in\mathbb{N}}$ auch konvergiert mit $\lim c_n = c = 3a b$, indem man zu beliebigem $\varepsilon > 0$ ein $N(\varepsilon)$ angebe.
- 17) Seien $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ zwei konvergente Folgen mit $\lim a_n = a$ und $\lim b_n = b$ mit $b \neq 0$. Man zeige, dass dann gilt $\lim \frac{a_n}{b_n} = \frac{a}{b}$. Wieso spielt hierbei die zusätzliche Bedingung $b_n \neq 0$ für alle $n \in \mathbb{N}$, die eigentlich für die Existenz der Folge $(\frac{a_n}{b_n})_{n\in\mathbb{N}}$ notwendig ist, keine große Rolle?
- **18)** Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge mit $\lim_{n\to\infty} a_n = a$. Zeigen Sie, dass $\lim_{n\to\infty} |a_n| = |a|$.
- **19)** Seien $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ konvergente Folgen. Zeigen Sie, dass aus $a_n < b_n$ immer $\lim_{n\to\infty} a_n \leq \lim_{n\to\infty} b_n$ folgt. Läßt sich hier \leq durch < ersetzen?

- **20)** Für alle $n \in \mathbb{N}$ mit $n \ge 1$ sei $a_n = 1 + \frac{1}{n^2} + \cos\left(\frac{\pi n}{2}\right)(3 \frac{5}{n})$.
 - 1. Gelten für die Umgebung $U = U_1(3) = (2,4)$ von 3 die folgenden beiden Aussagen?
 - (a) $a_n \in U$ für unendlich viele n.
 - (b) Es gibt ein $N = N(\varepsilon) = N(1)$ mit $a_n \in U$ für alle $n \ge N$.
 - 2. Geben Sie alle Häufungspunkte der Folge $(a_n)_{n\geq 1}$ an.
 - 3. Geben Sie eine Folge natürlicher Zahlen $n_1 < n_2 < \ldots$ an, so dass $(a_{n_k})_{k \in \mathbb{N}}$ eine monotone Teilfolge von $(a_n)_{n \geq 1}$ ist.
 - 4. Warum konvergieren alle monotonen Teilfolgen von $(a_n)_{n\geq 1}$?
- 21–27) Man untersuche die Folge a_n (mit Hilfe vollständiger Induktion) auf Monotonie und Beschränktheit und bestimme gegebenenfalls mit Hilfe der bekannten Rechenregeln für Grenzwerte den Grenzwert $\lim a_n$.
- **21)** $a_0 = 3$, $a_{n+1} = \sqrt{2a_n 1}$ für alle $n \ge 0$.
- **22)** $a_0 = 4$, $a_{n+1} = \sqrt{6a_n 9}$ für alle $n \ge 0$.
- **23)** $a_0 = 2$, $a_{n+1} = \sqrt{4a_n 3}$ für alle $n \ge 0$.
- **24)** $a_0 = 2$, $a_{n+1} = \sqrt{4 \cdot \sqrt{a_n} 3}$ für alle $n \ge 0$. Hinweis: $x^4 4x + 3 = (x 1)^2(x^2 + 2x + 3)$.
- **25)** $a_0 = 2, a_{n+1} = \sqrt{2 \cdot \sqrt{a_n} 3}$ für alle $n \ge 0$. Hinweis: $x^4 2x + 1 = (x 1)(x^3 + x^2 + x 1)$.
- **26)** $a_0 = 2$, $a_{n+1} = \sqrt[3]{2a_n 1}$ für alle $n \ge 0$.
- **27)** $a_0 = 1/2$, $a_{n+1} = \sqrt[3]{2a_n 1}$ für alle $n \ge 0$.
- 28) Man untersuche nachstehende Folgen in Hinblick auf Monotonie, Beschränktheit und mögliche Grenzwerte. Ferner veranschauliche man die Folgen auf der reellen Zahlengeraden:
 - (a) $(a_n) = 0, 1, \frac{1}{2}, 3, \frac{1}{4}, 5, \frac{1}{6}, \dots, 2n+1, \frac{1}{2n+2}, \dots$
 - (b) (b_n) mit $b_n = \frac{n+4}{n-1}$ für $n \ge 2$
 - (c) (c_n) mit $c_n = (-1)^n \frac{n+1}{n}$ für $n \ge 1$
- **29)** Sei $0 < a_0 < c$ und $(a_n)_{n \in \mathbb{N}}$ eine Folge positiver reeller Zahlen mit $a_{n+1} = \sqrt{a_n c}$.
 - (a) Zeigen Sie, dass aus 0 < a < c stets $a < \sqrt{ac} < c$ folgt.
 - (b) Folgern Sie aus (a) mittels Induktion nach n, dass $0 < a_n < c$ für alle $n \in \mathbb{N}$.
 - (c) Zeigen die a_n irgendein Monotonieverhalten? Wenn ja, welches?
 - (d) Untersuchen Sie die a_n hinsichtlich Konvergenz und bestimmen Sie gegebenenfalls den Grenzwert.

30) Gegeben sei die rekursiv definierte Folge (a_n) mit $a_0 = 3$ und $a_{n+1} = (a_n + 6/a_n)/2$ für $n = 0, 1, 2, \ldots$. Man berechne die Folgenglieder a_n für $n = 0, \ldots, 10$, untersuche die Folge in Bezug auf Monotonie, Beschränktheit sowie Konvergenz und berechne – wenn möglich – den Grenzwert.

31) Seien P_1 und P_2 beliebige Punkte der Zahlengeraden. Man halbiere fortgesetzt die Strecke $\overline{P_1P_2}$ in P_3 , die Strecke $\overline{P_2P_3}$ in P_4 , $\overline{P_3P_4}$ in P_5 , usw. und bestimme die Lage von P_n für $n \to \infty$.

32–47) Man untersuche die Folge $(a_n)_{n\in\mathbb{N}}$ auf Konvergenz und bestimme gegebenfalls den Grenzwert.

32)
$$a_n = \frac{2n^3 + 2n - 3}{4n^3 + n^2 + 5}$$

33)
$$a_n = \frac{4n^2 + 5n - 3}{2n^3 + 3n^2 - n + 7}$$

34)
$$a_n = \frac{3n^2 - 5n + 7}{3n^3 - 5n + 7}$$

35)
$$a_n = \frac{2n^3 - 5n^2 + 7}{2n^3 - 5n + 7}$$

36)
$$a_n = \frac{2n^2 - 5n^{\frac{9}{4}} + 7}{7n^3 + 2n^{-\frac{3}{2}} + 1}$$

37)
$$a_n = \frac{3n^2 - 4n^{\frac{11}{3}} + n^{-1}}{2n^4 + 2n^{-\frac{3}{2}} + 1}$$

38)
$$a_n = \sqrt{n+1} - \sqrt{n}$$

$$39) \ a_n = \sqrt{n + \sqrt{n}} - \sqrt{n}$$

40)
$$a_n = \frac{n!}{n^n}$$

41)
$$a_n = \frac{\sqrt{n+2} - \sqrt{n}}{\sqrt[3]{\frac{1}{n}}}$$

42)
$$a_n = \frac{\frac{\sin n}{(n-2)^2} + \frac{n^2+2}{n^2-n}}{\frac{3n^2+2}{n^2+n}}$$

43)
$$a_n = \frac{\frac{n^2 - 4}{4n^2 - 7n} - \frac{\cos n}{2n - 5}}{\frac{3n^2 + 2}{(n - 3)^2}}$$

44)
$$a_n = n q^n \quad (-1 < q < 0)$$

45)
$$a_n = \frac{q^n}{n} \quad (q > 1)$$

46)
$$a_n = \sqrt[n^2]{n^5 + 1}$$

47)
$$a_n = \sqrt[n^2]{n^3 + n^2}$$

(Hinweis zu Bsp. 46) und Bsp. 47): Man verwende den als bekannt vorausgesetzten Grenzwert $\lim_{n\to\infty} \sqrt[n]{n} = 1$.)

48–51) Man untersuche die Folge $(a_n)_{n\geq 1}$ auf Konvergenz und bestimme gegebenenfalls den Grenzwert, indem man zwei geeignete Folgen $(b_n)_{n\geq 1}$, $(c_n)_{n\geq 1}$ mit $b_n\leq a_n\leq c_n$ finde.

48)

$$a_n = \frac{1}{n^2 + 1} + \frac{1}{n^2 + 2} + \dots + \frac{1}{n^2 + n}$$
 $a_n = \frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \dots + \frac{1}{(n+n)^2}$

50) 51)

$$a_n = \frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}} \qquad a_n = \frac{n^2 + 1}{n^3 + 1} + \frac{n^2 + 2}{n^3 + 2} + \dots + \frac{n^2 + n}{n^3 + n}$$

52) Zeigen Sie: Sind $a_1, \ldots, a_m \geq 0$ fest gewählte reelle Zahlen und ist $(b_n)_{n \in \mathbb{N}}$ durch $b_n = \sqrt[n]{a_1^n + \cdots + a_m^n}$ definiert, so gilt $\lim b_n = \max\{a_1, \ldots, a_m\}$.

53) Sei die Folge $(a_n)_{n\in\mathbb{N}}$ rekursiv gegeben durch $a_0=0$ und

$$a_n = a_{n-1} + \frac{1}{n(n+1)} \quad (n \ge 1).$$

Man zeige (mit Hilfe vollständiger Induktion)

$$a_n = 1 - \frac{1}{n+1}$$

und bestimme den Grenzwert.

54) Sei die Folge $(a_n)_{n\in\mathbb{N}}$ rekursiv gegeben durch $a_0=0$ und

$$a_{n+1} = a_n + \frac{n}{(n+1)!}$$
 $(n \ge 0).$

Man zeige (mit Hilfe vollständiger Induktion)

$$a_n = 1 - \frac{1}{n!}$$

und bestimme den Grenzwert.

55) Bestimmen Sie den Grenzwert der Folge

$$a_n = \frac{1}{n^2} + \frac{2}{n^2} + \dots + \frac{n}{n^2}.$$

56–57) Man bestimme alle Häufungspunkte, sowie $\limsup_{n\to\infty} a_n$ und $\liminf_{n\to\infty} a_n$ der Folge a_n :

56)

$$a_n = (-1)^n n^{\left((-1)^{\frac{n(n+1)}{2}} + 1\right)} + \cos\frac{n\pi}{2}$$
 $a_n = \frac{n^2 \cos\frac{n\pi}{2} + 1}{n+1} + \sin\frac{(2n+1)\pi}{2}$

58–59) Man zeige, dass die Folge a_n uneigentlich konvergiert, indem man zu jedem A>0 ein N(A) angebe, sodass für n>N(A) immer $a_n>A$ gilt.

58)
$$a_n = \frac{n^3 + 1}{n - 1} \qquad \qquad a_n = \frac{2n^4 + n}{n^3 + n}$$

60) Man gebe zwei reelle Nullfolgen $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ an, die

$$\lim_{n \to \infty} \frac{a_n}{b_n} = 0 \quad \text{und} \quad \lim_{n \to \infty} \frac{a_n}{b_n^2} = +\infty$$

erfüllen.

61) Man gebe zwei reelle Folgen $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ mit $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = +\infty$ an, die

$$\lim_{n\to\infty}\frac{a_n}{b_n}=0 \qquad \text{ und } \qquad \lim_{n\to\infty}\frac{a_n^2}{b_n}=+\infty \qquad \text{erfüllen}.$$

62–63) Man untersuche, welche o-, O- und \sim -Beziehungen zwischen den Folgen a_n, b_n und c_n bestehen.

62)
$$a_n = 2n, b_n = \frac{n^2}{2}, c_n = \frac{3n^4}{6n^2+1}.$$
 63) $a_n = \frac{2}{n}, b_n = \frac{1}{n^2}, c_n = \frac{8n^2}{4n^3+1}.$

64–65) Zeigen Sie die folgenden asymptotischen Beziehungen für die Anzahlen der Kombinationen mit bzw. ohne Wiederholungen für festes k und $n \to \infty$:

64)
$$\binom{n}{k} \sim \frac{n^k}{k!}$$
 65) $\binom{n+k-1}{k} \sim \frac{n^k}{k!}$

66) Zeigen Sie die folgende asymptotische Beziehung für die Anzahl der Variationen ohne Wiederholungen für festes k und $n \to \infty$:

$$[n]_k = n(n-1)\cdots(n-k+1) = n^k + O(n^{k-1}).$$

67–68) Man zeige mit Hilfe der Stirlingschen Approximationsformel $n! \sim n^n e^{-n} \sqrt{2\pi n}$:

67)
$$\binom{2n}{n} \sim \frac{4^n}{\sqrt{\pi n}}$$

$$\binom{3n}{n} \sim \left(\frac{27}{4}\right)^n \sqrt{\frac{3}{4\pi n}}$$

69) Man bestimme die Größenordnungen von

(a)
$$2.7n^2 - 0.5n + 1$$
,

(b)
$$0.35 \cdot 2^n + 5n^5$$
.

(c)
$$\sqrt{1+1.1n^2}$$
.

70) Man zeige:

(d)
$$a_n = O(1) \Leftrightarrow (a_n)$$
 beschränkt, und

(e)
$$a_n = o(1) \Leftrightarrow (a_n)$$
 Nullfolge.

71–76) Man bestimme die Partialsummenfolge und ermittle dann gegebenenfalls den Grenzwert der Reihe. (Hinweis: Man stelle die Summanden als Differenz bzw. Summe passender Ausdrücke dar.)

71)
$$\sum_{n=1}^{\infty} \frac{3}{n(n+2)}$$
 72) $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$

73)
$$\sum_{n=1}^{\infty} \frac{n}{(n+1)!}$$
 74) $\sum_{n=1}^{\infty} \frac{n+1}{(n+2)!}$

75)
$$\sum_{n=1}^{\infty} (-1)^n \frac{2n+1}{n(n+1)}$$
 76) $\sum_{n=1}^{\infty} (-1)^n \frac{2n+5}{(n+2)(n+3)}$

77–78) Man berechne unter Benützung der komplexen Zahlen und der Moivreschen Formel $(\cos x + i \sin x)^n = \cos(nx) + i \sin(nx)$ den Grenzwert der Reihe:

77)
$$\sum_{n\geq 0} \frac{\sin\frac{n\pi}{3}}{2^n}$$
 78) $\sum_{n\geq 0} \frac{\cos\frac{n\pi}{3}}{2^n}$

79) Für $n=1,2,3,\ldots$ sei $a_n=\frac{1}{n^2},\ b_n=\frac{1}{n(n+1)},\ c_n=\frac{1}{n}$ und $d_n=\frac{1}{n+1}.$ Weiters sei $A=\sum_{n=1}^\infty a_n,\ B=\sum_{n=1}^\infty b_n,\ C=\sum_{n=1}^\infty c_n$ und $D=\sum_{n=1}^\infty d_n.$

- (a) Berechnen Sie die Partialsummen von B.
- (b) Berechnen Sie den Wert von B.
- (c) Begründen Sie $a_n \leq 2b_n$. Konvergiert A?
- (d) Warum ist B = C D falsch, obwohl $b_n = c_n d_n$?

80-89) Man untersuche die folgenden Reihen auf Konvergenz:

80)
$$\sum_{n>0} \frac{3n^2+1}{5n^3-2}$$

$$81) \sum_{n>0} \frac{n-2}{2n^3 + 5n - 3}$$

82)
$$\sum_{n>0} \frac{n+2}{6^n}$$

83)
$$\sum_{n>1} \frac{n!}{n^n}$$

Hinweis: Man benütze die aus der Bernoullischen Ungleichung folgende Ungleichung $\left(1+\frac{1}{n}\right)^n \geq 2$.

84)
$$\sum_{n>0} \frac{2n^2+1}{n^4+2}$$

85)
$$\sum_{n>0} \frac{n+3}{7n^2 - 2n + 1}$$

86)
$$\sum_{n>0} \frac{n-1}{3^n}$$

87)
$$\sum_{n\geq 1} \frac{n^{n-1}}{n!}$$

88)
$$\sum_{n>1} \frac{(n^2+1)^n}{\sqrt{n}^{n^2}}$$

89)
$$\sum_{n>0} \frac{3^{n^2}}{n^n}$$

90-93) Man untersuche die folgenden Reihen auf Konvergenz und absolute Konvergenz:

90)
$$\sum_{n>0} \frac{(-1)^n}{\sqrt{n^2+2}}$$

91)
$$\sum_{n \ge 1} \frac{(-1)^n}{n^{3/2} + 5n}$$

92)
$$\sum_{n>0} \frac{(-1)^n}{\sqrt[3]{n+2}}$$

93)
$$\sum_{n>0} \frac{(-1)^n}{(n+3)^{4/3}}$$

94) Sei $a_n \geq 0$ und die Reihe $\sum_{n\geq 0} a_n$ konvergent. Man zeige, dass dann auch die Reihe $\sum_{n\geq 0} a_n^2$ konvergiert.

95) Gilt Bsp. 94) auch ohne die Voraussetzung $a_n \ge 0$? (Beweis oder Gegenbeispiel!)

96) Sei $a_n \geq 0$ und die Reihe $\sum_{n\geq 0} a_n$ konvergent. Man zeige, dass dann auch die Reihe $\sum_{n\geq 0} a_n^3$ konvergiert.

97) Gilt Bsp. 96) auch ohne die Voraussetzung $a_n \ge 0$? (Beweis oder Gegenbeispiel!)

98) Es sei $\lim a_n = a$. Man bestimme den Grenzwert der Reihe $\sum_{n>0} (a_{n+1} - a_n)$.

99) Es sei $\lim a_n = a$. Man bestimme den Grenzwert der Reihe $\sum_{n \geq 0} (a_{n+2} - a_n)$.

100) Es sei $\lim a_n = 0$. Man bestimme den Grenzwert der Reihe $\sum_{n \geq 0} (-1)^n (a_{n+1} + a_n)$.

101-104) Man zeige, dass die folgende Funktionenreihen im jeweils angegebenen Bereich konvergieren:

101)
$$\sum_{n>0} {1 \choose 2} x^n, \quad |x|<1$$

102)
$$\sum_{n>0} {2n \choose n} x^n, \quad |x| < \frac{1}{4}$$

103)
$$\sum_{n\geq 0} \frac{z^{2n+1}}{(2n+1)!}, \quad z\in \mathbb{C}$$

104)
$$\sum_{n>0} \frac{z^{2n}}{(2n)!}, \quad z \in \mathbb{C}$$

105–106) Man untersuche, für welche $x \in \mathbb{R}$ die folgende Funktionenreihe konvergiert:

105)
$$\sum_{n=1}^{\infty} \frac{1}{2n-1} (x-1)^n$$

106)
$$\sum_{n=1}^{\infty} \frac{n}{n^2 + 1} (x+1)^n$$

107) Man zeige:

$$\sum_{n=0}^{\infty} \frac{a^n}{n!} \sum_{n=0}^{\infty} \frac{b^n}{n!} = \sum_{n=0}^{\infty} \frac{(a+b)^n}{n!}, \qquad a, b \in \mathbb{R}.$$

108) Man zeige:

$$\sum_{n=0}^{\infty} \frac{a^n}{n!} \sum_{n=0}^{\infty} \frac{(-1)^n b^n}{n!} = \sum_{n=0}^{\infty} \frac{(a-b)^n}{n!}, \qquad a, b \in \mathbb{R}.$$

109–112) Man zeichne den Graphen der Funktion f(x) und bestimme alle Stellen, an denen f(x) stetig ist. $(\operatorname{sgn}(x) = 1 \text{ für } x > 0, \operatorname{sgn}(x) = -1 \text{ für } x < 0 \text{ und } \operatorname{sgn}(0) = 0.)$

109)
$$f(x) = (x - \pi/2) \operatorname{sgn}(\cos x)$$

110)
$$f(x) = (x^2 - 1)\operatorname{sgn}(\sin(\pi x))$$

111)
$$f(x) = x \operatorname{sgn}(\sin x)$$

112)
$$f(x) = x \sin(\frac{\pi}{3} \text{sgn}(x))$$

113) Man skizziere den Verlauf der Funktion $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}, f(x) = \sin(1/x)$ und beweise, dass f(x) an der Stelle $x_0 = 0$ keinen Grenzwert besitzt, indem man die beiden Folgen $x_n = 1/(n\pi)$ und $x_n = 1/(2n\pi + \pi/2)$ betrachtet.

114-117) Man zeige, dass die folgenden Funktionen stetige Umkehrfunktionen haben und bestimme diese:

114)
$$f(x) = \frac{1-x^3}{x^3}$$
, $D_f = (1, \infty)$ **115)** $g(x) = (1+\sqrt{x})^7$, $D_g = (0, \infty)$

115)
$$g(x) = (1 + \sqrt{x})^7$$
, $D_g = (0, \infty)$

116)
$$f(x) = \frac{1 - x^7}{x^7}$$
, $D_f = (1, \infty)$ **117)** $g(x) = (1 + \sqrt{x})^5$, $D_g = (0, \infty)$

117)
$$g(x) = (1 + \sqrt{x})^5, \quad D_g = (0, \infty)$$

118) Man zeige mit Hilfe des Nullstellensatzes, dass die Funktion $y = e^{x/2} - 4x + 1$ im Intervall [0, 1] sowie im Intervall [6, 7] je eine Nullstelle besitzt. Wie können diese Nullstellen näherungsweise berechnet werden?

119) Man skizziere die Graphen der Funktionen

$$f_1(x) = \cos x$$
, $f_2(x) = \frac{1}{\cos x}$, $f_3(x) = \cos^2 x$, $f_4(x) = |\cos x|$, $f_5(x) = \sqrt{|\cos x|}$

im Intervall $[0,\pi]$ und untersuche alle Funktionen auf Stetigkeit und Differenzierbarkeit.

120) Sei $f:[0,a] \to \mathbb{R}$ stetig, f(0)=0, f(a)>a und $f(x)\neq x$ für 0 < x < a. Man zeige, dass dann auch f(x) > x für 0 < x < a gilt.

121) Man zeige, dass es zu jeder stetigen Funktion $f : [a, b] \to [a, b]$ wenigstens ein $x_0 \in [a, b]$ mit $f(x_0) = x_0$ gibt.

122–127) Man untersuche, wo die Funktion f(x) differenzierbar ist und bestimme dort f'(x):

122)
$$f(x) = \frac{\sqrt{x^2 - 4x + 4}}{\sqrt{x^2 - 5x + 2}}$$
 123) $f(x) = Arcsin(\sqrt[3]{x^2 - 2})$

124)
$$f(x) = \frac{\sqrt{x^2 - 4x + 4}}{\sqrt{x^2 - 6x + 3}}$$
 125) $f(x) = \operatorname{Arccos}\left(\sqrt[4]{x^2 - 2}\right)$

126)
$$f(x) = \sqrt{\frac{x^2 + 2x + 1}{x^2 - 4x + 3}}$$
 127) $f(x) = Arctan\left(\sqrt{\frac{x + 1}{x - 1}}\right)$

128–129) Man zeige mittels Differenzieren:

128)

$$\operatorname{Arctan}\sqrt{\frac{1-x}{1+x}} + \frac{1}{2}\operatorname{Arcsin}x = \frac{\pi}{4}, \qquad x \in (-1,1)$$

129)
$$\operatorname{Arcsin} x = \operatorname{Arctan} \left(\frac{x}{\sqrt{1-x^2}} \right), \qquad x \in (-1,1)$$

130) Zeigen Sie: Sind $g_1(x), \ldots, g_m(x)$ differenzierbar und $g_j(x) \neq 0$ für alle j, so gilt

$$\frac{\left(\prod_{j=1}^{m} g_j(x)\right)'}{\prod_{j=1}^{m} g_j(x)} = \sum_{j=1}^{m} \frac{g'_j(x)}{g_j(x)}.$$

- 131) Wie ist t zu wählen, damit die Funktion $f(x) = (x^2 + t)/(x t)$ in einer Umgebung der Stelle $x_0 = 1$ streng monoton fallend ist? Machen Sie eine Skizze.
- 132) Man diskutiere die Funktion $f(x) = \sin x \sqrt{3}\cos x$ im Intervall $I = [-\pi, \pi]$.
- **133)** Sei $f: \mathbb{R} \to \mathbb{R}$ monoton fallend und differenzierbar. Man zeige, dass dann $f'(x) \leq 0$ für alle $x \in \mathbb{R}$ gilt.
- **134)** Folgt in Bsp. 133) aus der strengen Monotonie sogar f'(x) < 0 für alle $x \in \mathbb{R}$? (Beweis oder Gegenbeispiel!)
- **135)** Sei $f : \mathbb{R} \to \mathbb{R}$ monoton wachsend und differenzierbar. Man zeige, dass dann $f'(x) \geq 0$ für alle $x \in \mathbb{R}$ gilt.
- **136)** Folgt in Bsp. 135) aus der strengen Monotonie sogar f'(x) > 0 für alle $x \in \mathbb{R}$? (Beweis oder Gegenbeispiel!)
- 137) Man berechne die ersten 4 Ableitungen der Funktion f(x) = (x+1)/(x-1). Können Sie allgemein einen Ausdruck für die n-te Ableitung angeben?
- 138) Man leite die unendlichen Reihen für $\sin(x)$ und $\cos(x)$ durch Entwicklung der beiden Funktionen in eine Taylorreihe mit dem Entwicklungspunkt $x_0 = 0$ her.
- 139) Man approximiere die Funktion $f(x) = 8(x+1)^{3/2}$ in eine lineare bzw. eine quadratische Polynomfunktion im Punkt $x_0 = 0$. Wie groß ist jeweils der Fehler an der Stelle x = 1/2?

- **140)** Gegeben seien die Funktionen $f(x) = \frac{1}{1-x}$, $g(x) = \frac{1}{1+x}$ und $h(x) = \frac{1}{1-x^2}$.
 - (a) Stellen Sie f, g und h als Potenzreihen mit Anschlussstelle $x_0 = 0$ dar und geben Sie deren Konvergenzradius an.
 - (b) Berechnen Sie das Cauchyprodukt der Reihen von f und g.

141–144) Die Abbildungen sinh, cosh : $\mathbb{R} \to \mathbb{R}$ sind definiert durch: $\sinh(x) = \frac{1}{2}(e^x - e^{-x})$, $\cosh(x) = \frac{1}{2}(e^x + e^{-x})$.

- 141) Man bestimme die Potenzreihenentwicklung von cosh(x) an der Stelle $x_0 = 0$.
- 142) Man bestimme die Potenzreihenentwicklung von sinh(x) an der Stelle $x_0 = 0$.
- **143)** Man beweise die Formel $\cosh(x+y) = \cosh(x)\cosh(y) + \sinh(x)\sinh(y)$.
- **144)** Man beweise die Formel $\sinh(x+y) = \sinh(x)\cosh(y) + \cosh(x)\sinh(y)$.
- **145)** Man bestimme die Potenzreihenentwicklung von $f(x) = (x^2 + 1) \sin x$ an der Stelle $x_0 = 0$ durch Produktbildung zweier Potenzreihen.
- **146)** Man bestimme die Potenzreihenentwicklung von $f(x) = (1 x^2) \cos x$ an der Stelle $x_0 = 0$ durch Produktbildung zweier Potenzreihen.
- **147)** Man bestimme die Potenzreihenentwicklung von $f(x) = (1 + 3x 3x^2) \cos x$ an der Stelle $x_0 = 1$ durch Produktbildung zweier Potenzreihen.
- **148)** Wie 141, nur für $x_0 = 1$.
- **149)** Wie 142, nur für $x_0 = 2$.
- **150)** Wie 145, nur für $x_0 = 3$.
- **151)** Wie 146, nur für $x_0 = -1$.
- **152)** Wie 147, nur für $x_0 = -3$.
- **153**) Wie 145, nur für $x_0 = -3$.
- **154)** Wie 146, nur für $x_0 = -2$.
- 155) Man berechne die Grenzwerte nachstehender unbestimmter Formen:

(a)
$$\lim_{x \to 1} \left(\frac{2}{1 - x^2} - \frac{3}{1 - x^3} \right)$$

(b)
$$\lim_{x \to \infty} \frac{17x^2 + 4x - 1}{x^3 - 12x^2 + 1}$$

(c)
$$\lim_{x \to 0} \frac{1 - \cos x}{x}$$

156) Man berechne die Grenzwerte nachstehender unbestimmter Formen:

- (a) $\lim_{x \to 1} \frac{\sqrt{x^2 1}}{\ln(x)}$
- (b) $\lim_{x \to \infty} \frac{3x^4}{e^{4x}}$
- (c) $\lim_{x \to 1/2} (1 2x) \tan(\pi x)$

157–163) Man berechne die Grenzwerte nachstehender unbestimmter Formen:

157)

(a) $\lim_{x \to 1} \left(\frac{2}{1 - x^2} - \frac{3}{1 - x^3} \right)$

(a) $\lim_{x \to 0} \frac{1 - \cos x}{x}$

158)

160)

(b) $\lim_{x \to \infty} \frac{17x^2 + 4x - 1}{x^3 - 12x^2 + 1}$

(b) $\lim_{x \to 1} \frac{\sqrt{x^2 - 1}}{\ln(x)}$

159)

(a) $\lim_{x \to 1} \frac{\sqrt{x^2 - 1}}{\ln(x)}$

(a) $\lim_{x \to 1/2} (1 - 2x) \tan(\pi x)$

(b) $\lim_{x \to \infty} \frac{3x^4}{e^{4x}}$

(b) $\lim_{x \to 1} \frac{\sin(1-x^2)}{(x-1)(\cos(x-1)-1)}$

161)

(a) $\lim_{x \to 1^{-}} \ln(1-x) \cdot \ln(x)$

- 162)
 - (a) $\lim_{x \to 1} \frac{x^2 + 4x 5}{\tan(\pi x)}$

(b) $\lim_{x \to \infty} x \ln \left(1 + \frac{1}{x} \right)$

(b) $\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{\sin x} \right)$

163)

- (a) $\lim_{x\to\infty} \frac{3x^4}{e^{4x}}$
- (b) $\lim_{x \to 1/2} (1 2x) \tan(\pi x)$
- 164) Man berechne den Grenzwert

$$\lim_{x \to 0} \frac{\sin(x^2)}{x \sin x}.$$

165) Man berechne den Grenzwert

$$\lim_{x \to 1-} \left(\frac{\pi}{2} \tan \frac{\pi x}{2} - \frac{1}{1-x} \right).$$

166) Man berechne den Grenzwert

$$\lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{\frac{1}{x^2}}.$$

167–169) Man bestimme mit Hilfe der Bisektion auf drei Dezimalstellen genau die positive Nullstelle der Funktion f(x) im angegebenen Intervall I:

167)
$$f(x) = \sin x - \frac{x}{2}, I = [\pi/2, \pi].$$

168)
$$f(x) = \cos x - x, I = [0, \pi/2].$$

169)
$$f(x) = (\tan x)^2 - x, |x| < \frac{\pi}{4}$$

- 170) Lösen Sie Aufgabe 167 mit Hilfe des Newton-Verfahrens und mit Hilfe der Regula falsi.
- 171) Lösen Sie Aufgabe 168 mit Hilfe des Newton-Verfahrens und mit Hilfe der Regula falsi
- 172) Lösen Sie Aufgabe 169 mit Hilfe des Newton-Verfahrens und mit Hilfe der Regula falsi.
- 173) Gesucht ist eine in der Nähe von

(a)
$$x_0 = 3$$
, bzw. (b) $x_0 = -3$

gelegenen Nullstelle der Funktion $f(x) = e^{-x} + x^2 - 10$.

174) Nach welcher Zeit t (in Stunden) erreichen die Betriebskosten

$$B(t) = 10.45t + 0.0016t^2 + 17200(1 - e^{-0.0002t})$$

eines Netzwerkrouters den Anschaffunspreis $A = 100.000, - \in ?$ Ist die Lösung eindeutig bestimmt?

(Anleitung: Man bilde die Funktion f(t) = B(t) - A, untersuche deren Monotonieverhalten und bestimme schließlich die gesuchte Nullstelle mit Hilfe des Newton-Verfahrens.)

- 175) Man zeige, dass $f(x) = x^4 x 1$ in [1,2] eine Nullstelle hat und bestimme diese näherungsweise mit (wenigstens) 4 Schritten der Bisektion und der Regula falsi.
- 176) Man ermittle für sämtliche Nullstellen der Funktion $f(x) = 3x + 2\sin^2 x + 1$ Näherungen, indem man jeweils 4 Schritte des Newtonverfahrens durchführt.
- 177–178) Bestimmen Sie eine Nullstelle der Funktion $F(x) = x^2 1$ im Intervall [0,3], indem Sie jeweils 3 Schritte der angegebenen Verfahrens durchführen, und vergleichen Sie die Ergebnisse.
- 177) a) Bisektion, b) Regula falsi, c) Newtonsches Näherungsverfahren (Startwert Intervallende)
- 178) a) Iterative Fixpunktbestimmung für $x = f(x) = (x^2 + 3x 1)/3$ (Startwert Intervallende), b) iterative Fixpunktbestimmung für $x = g(x) = (1 + 2x x^2)/2$ (Startwert Intervallende), c) wählen Sie eine andere Funktion h(x), sodaß die Gleichung h(x) = x äquivalent ist zur Gleichung F(x) = 0.
- 179) Man zeige, dass die Funktion $\varphi(x) = x e^{-x} + \cos x$ eine kontrahierende Abbildung des Intervalls [1.2, 1.3] in sich ist, und berechne den (einzigen) Fixpunkt x^* dieser Funktion im angegebenen Intervall (Genauigkeit: zwei Nachkommastellen)

Hinweis: Zeigen Sie zunächst, daß im angebenen Intervall f''(x) < 0 gilt. Was kann man daraus für f'(x) schließen? Benutzen Sie dies, um die Kontraktionseigenschaft zu zeigen!).

180) Man bestimme die Lösungsfolge der beim "Babylonischen Wurzelziehen" auftretenden Iteration

$$x_{n+1} = \varphi(x_n) = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right), \quad n = 0, 1, 2, \dots$$

(wobei a > 0, $x_0 > 0$ ist) auf graphischem Weg und zeige, dass stets

$$x_1 \ge x_2 \ge x_3 \ge \dots \ge \sqrt{a}$$

gilt, d.h., die Iterationsfolge (x_n) ist ab n=1 monoton fallend und nach unten durch \sqrt{a} beschränkt.

- 181) Man zeige: Für a > 0 konvergiert die Iterationsfolge (x_n) gemäß $x_{n+1} = 2x_n ax_n^2$ mit $\frac{1}{2a} < x_0 < \frac{3}{2a}$ gegen den Fixpunkt $x^* = \frac{1}{a}$. Diese Iteration stellt somit ein Verfahren zur Division unter ausschließlicher Verwendung von Multiplikationen dar.
- **182)** Für die Funktion $f(t) = \begin{cases} -1 & (t \le 1) \\ 1 & (t > 1) \end{cases}$ berechnen Sie $F(x) = \int_0^x f(t) dt$. Ist F(x) stetig bzw. differenzierbar?
- **183)** Wie 182) für $f(t) = \begin{cases} -2 & (t \le 1) \\ 1 & (t > 1) \end{cases}$. **184)** Wie 182) für $f(t) = \begin{cases} -1 & (t \le 1) \\ t & (t > 1) \end{cases}$.
- **185)** Wie 182) für $f(t) = \begin{cases} -t^2 & (t \le 2) \\ t^2 & (t > 2) \end{cases}$. **186)** Wie 182) für $f(t) = \begin{cases} -t^3 + 1 & (t \le 3) \\ t^3 1 & (t > 3) \end{cases}$.
- 187) Berechnen Sie $\int_1^2 x^2 dx$ mit Hilfe von Obersummen bei äquidistanter Teilung.
- 188) Berechnen Sie $\int_2^3 x^2 \, dx$ mit Hilfe von Untersummen bei äquidistanter Teilung.

Hinweis zu 187) und 188): $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$, $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$.

- **189)** Berechnen Sie $\int_1^2 x^3 dx$ mit Hilfe von Untersummen bei äquidistanter Teilung. (Hinweis: $\sum_{k=1}^n k^3 = \binom{n+1}{2}^2$, $\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}$, $\sum_{k=1}^n k = \binom{n+1}{2}$.)
- 190) Sei $a \geq 0$. Berechnen Sie

$$\lim_{n \to \infty} \frac{1}{n^{a+1}} \sum_{k=1}^{n} k^a$$

durch Interpretation als Grenzwert Riemannscher Zwischensummen.

191) Berechnen Sie

$$\lim_{n \to \infty} \frac{1}{n^3} \sum_{k=1}^{n} k(n-k)$$

durch Interpretation als Grenzwert Riemannscher Zwischensummen.

192) Berechnen Sie

$$\lim_{n \to \infty} \frac{1}{n^2} \sum_{k=1}^n \sqrt{n^2 - k^2}$$

durch Interpretation als Grenzwert Riemannscher Zwischensummen.

193) Berechnen Sie

$$\lim_{n \to \infty} \frac{1}{n^2} \sum_{k=1}^{n} \sqrt{(n+k)(n-k)}$$

durch Interpretation als Grenzwert Riemannscher Zwischensummen.

194) Berechnen Sie

$$\lim_{n \to \infty} \frac{1}{n^2} \sum_{k=1}^{n} \sqrt{k(n-k)}$$

durch Interpretation als Grenzwert Riemannscher Zwischensummen.

Hinweis: Man substitutiere im auftretenden Integral $x = \frac{1+t}{2}$.

195) Mit Hilfe der Substitutionsregel beweise man die nachstehende Integrationsregel

$$\int \frac{u'(x)}{u(x)} dx = \ln|u(x)| + C$$

und berechne damit $\int \frac{dx}{x \ln x}$.

196) Man berechne $\int_1^\infty \frac{1}{x\sqrt{x-1}} dx$.

(Anleitung: Zum Integrieren wähle man die Substitution $u = \sqrt{x-1}$. Ferner beachte man, dass das angegebene Integral sowohl bei x = 1 als auch bei $x = \infty$ uneigentlich ist.)

197–236) Man berechne:

197)
$$\int_{1}^{2} (\sqrt[4]{x(\sqrt[3]{x\sqrt{x}})})^{5} dx$$

198)
$$\int_0^{\frac{2\pi}{3}} (\sin^2 x + \frac{x}{\sqrt{1+x^2}}) \, dx$$

200)
$$\int_0^{\pi/2} x^2 \cos^2 x \, dx$$

201)
$$\int_{1}^{2} \left(\frac{1}{x} - \frac{x}{1+x^2} \right) dx$$

202)
$$\int_0^{\pi/2} \cos^2 x \, dx$$

203)
$$\int_0^{\pi/4} \tan^2 x \, dx$$

$$204) \quad \int_1^e \frac{dx}{x\sqrt{\ln x}}$$

205)
$$\int_{-1}^{1} x^2 \sqrt{1-x^2} \, dx$$

206)
$$\int_0^1 \frac{x \, dx}{\sqrt{1+x^2}}$$

207)
$$\int_0^\infty x e^{-x} dx$$

$$208) \int_0^\infty x e^{-x^2} \, dx$$

$$209) \int_{1}^{\infty} \ln\left(1 + \frac{1}{x}\right) dx$$

210)
$$\int_{1}^{\infty} \frac{dx}{x^2 \sqrt{1+x^2}} \, dx$$

$$211) \int_{1}^{\infty} \frac{dx}{\sqrt{x}(1+x)}$$

212)
$$\int_0^1 \frac{dx}{\sqrt{x}(1+x)}$$

213)
$$\int x \arcsin x \, dx$$

214)
$$\int \frac{4x^3 + x^2 + 3x + 5}{(x-1)^2(x^2 + 2x + 3)} \, dx$$

215)
$$\int \frac{x}{x^3 + 1} dx$$

216)
$$\int \frac{x^3 + x^2 + 7}{x^2 + 5x + 6} \, dx$$

217)
$$\int \frac{x^2 + 1}{(x - 1)^2(x + 1)^2} dx$$
218)
$$\int \frac{x^3 - x^2 + 2}{x^3 - 3x + 2} dx$$
219)
$$\int \frac{x^6 - 6x + \sqrt{12x}}{x^2} dx$$
220)
$$\int x^2 \cos x dx$$
221)
$$\int \frac{dx}{x^2 + 2x + 9}$$
222)
$$\int \frac{dx}{2 \sin^2 x \cos^2 x}$$
223)
$$\int \frac{e^x}{e^{2x} - e^x - 6} dx$$
224)
$$\int \arccos x dx$$
225)
$$\int x \arctan(x) dx$$
226)
$$\int \frac{(x - 3)^2}{x^{-7/2}} dx$$
227)
$$\int x(\ln x)^2 dx$$
228)
$$\int (\sin x)(1 + 2\cos x)^4 dx$$
229)
$$\int \frac{\sqrt{x + 1}}{x} dx$$
230)
$$\int (x^2 + 1)e^{-2x} dx$$
231)
$$\int \frac{x^2 + 1}{x^3 + x^2 - x - 1} dx$$
232)
$$\int \frac{x^2 + 3}{2x^2 + 7} dx$$
233)
$$\int \frac{e^x - 1}{e^{2x} + 1} dx$$
234)
$$\int \sqrt{1 + 7x^2} dx$$

237-246) Untersuchen Sie die folgenden uneigentlichen Integrale auf Konvergenz.

236) $\int \frac{dx}{\sin x}$

237)
$$\int_{0}^{\infty} \frac{|\sin x|}{x^{3/2}} dx$$
238)
$$\int_{1}^{\infty} \frac{|\cos x|}{x^{2}} dx$$
239)
$$\int_{0}^{\infty} \frac{|\sin x|}{x^{2}} dx$$
240)
$$\int_{1}^{\infty} \frac{\ln x}{x} dx$$
241)
$$\int_{1}^{\infty} \frac{\ln x}{x^{2}} dx$$
242)
$$\int_{0}^{\infty} \frac{x}{e^{x^{3}}} dx$$
243)
$$\int_{0}^{\infty} \frac{x+3}{2x^{2}+3x+2} dx$$
244)
$$\int_{0}^{\infty} \frac{x^{x}}{e^{x^{2}}} dx$$
245)
$$\int_{0}^{\infty} \frac{2x-1}{3x^{3}+2x^{2}+3x+5} dx$$
246)
$$\int_{0}^{\infty} \frac{\sin x}{x} dx$$

235) $\int \frac{dx}{(1+x)\sqrt{x}}$

Hinweis: Einmal partiell integrieren und erst danach die Konvergenzuntersuchung vornehmen.

247–250) Bestimmen Sie den Wert der folgenden Integrale näherungsweise auf 3 Dezimalstellen (mit und ohne Computer).

Hinweis: Entwickeln Sie den Integranden in eine Taylorreihe. Wieviele Terme sind nötig, um die gewünschte Genauigkeit zu erzielen?

247)
$$\int_0^1 \frac{e^{-x^2} - 1 + x^2}{x^4} dx$$
 248)
$$\int_0^1 \frac{\sin(u^2)}{u} du$$
 249)
$$\int_0^1 \frac{\cos(t^2) - 1}{t^2} dt$$
 250)
$$\int_0^{1/2} \ln \frac{1}{1 - x^3} dx$$

251–262) Untersuchen Sie mit Hilfe des Integralkriteriums, ob die folgenden Reihen konvergieren:

251)
$$\sum_{n>1} \frac{1}{n(\ln^2 n - \ln n - 6)}$$
 252) $\sum_{n>1} \frac{e^{-\sqrt{n}}}{\sqrt{n}}$

253)
$$\sum_{n\geq 2} \frac{1}{n \ln^{\alpha} n}$$
 $(\alpha > 0)$ **254)** $\sum_{n\geq 1} \frac{1}{(1+n^2) \arctan n}$

255)
$$\sum_{n\geq 2} \frac{1}{n \ln n \ln(\ln n)^{\alpha}}$$
 $(\alpha > 0)$ **256)** $\sum_{n\geq 10} \frac{1}{n \ln n \ln(\ln n) \ln(\ln(\ln n))^5}$

257)
$$\sum_{n>0} ne^{-n}$$
 258) $\sum_{n>0} ne^{-n^2}$

259)
$$\sum_{n\geq 2} \frac{\ln^3(\ln n)}{n\ln n}$$
 260) $\sum_{n\geq 0} \frac{n}{\sqrt{(1+n^2)^3}}$

261)
$$\sum_{n\geq 1} \ln\left(1+\frac{1}{n}\right)$$
 262) $\sum_{n\geq 1} \frac{1}{n^2\sqrt{1+n^2}}$

263) Man zeige, dass die Ungleichung $|d(x,y)-d(y,z)| \leq d(x,z)$ in jedem metrischen Raum (X,d) für alle $x,y,z \in X$ gilt.

264) Für jede der Metriken $d = d_1$ (Summen-Metrik), $d = d_2$ (Euklidische Metrik), $d = d_{\infty}$ (Maximums-Metrik) und $d = d_H$ (Hamming-Metrik) auf \mathbb{R}^2 beschreibe man die abgeschlossene Einheitskugel $\bar{K}_d(\vec{0}, 1) = \{\vec{x} \mid d(\vec{0}, \vec{x}) \leq 1\}$ geometrisch (inkl. Skizze).

265) Wie 264), aber für \mathbb{R}^3 .

266) (X,d) sei ein beliebiger metrischer Raum und $p \in X$. Man zeige, dass durch

$$d_p(x,y) := \begin{cases} 0, & \text{falls } x = y, \\ d(x,p) + d(p,y), & \text{sonst,} \end{cases}$$

eine Metrik auf X definiert wird.

267) Man zeige, dass die Hamming-Metrik auf \mathbb{R}^n nicht durch eine Norm induziert wird.

268) Für fest gewählte $a, b \in \mathbb{R}$, a < b, bezeichne C[a, b] die Menge aller stetigen Funktionen $f: [a, b] \to \mathbb{R}$. Man zeige, dass die durch $||f|| := \int_a^b |f(x)| dx$ definierte Funktion $||\cdot||$ eine Norm auf C[a, b] ist.

269) Für fest gewählte $a, b \in \mathbb{R}$, a < b, bezeichne I[a, b] die Menge aller integrierbaren Funktionen $f:[a, b] \to \mathbb{R}$. Man überprüfe, ob die durch $||f|| := \int_a^b |f(x)| dx$ definierte Funktion $||\cdot||$ eine Norm auf I[a, b] ist.

270) Man betrachte den metrischen Raum (\mathbb{R}, d) , wobei d die euklidische Metrik ist. Man zeige, dass in diesem Raum die Menge \mathbb{Q} weder offen noch abgeschlossen ist.

271) Man bestimme alle offenen und alle abgeschlossenen Mengen in (\mathbb{R}, d_H) , wobei d_H die Hamming-Metrik ist.

272) Man zeige, dass eine Menge $O \subseteq \mathbb{R}^2$ bzgl. der Euklidischen Metrik d_2 offen ist genau dann, wenn O offen ist bzgl. der Summen-Metrik d_1 .

273) Man zeige, dass eine Menge $O \subseteq \mathbb{R}^2$ bzgl. der Euklidischen Metrik d_2 offen ist genau dann, wenn O offen ist bzgl. der Maximums-Metrik d_{∞} .

274) Man zeige, dass eine Menge $A \subseteq \mathbb{R}^2$ bzgl. der Euklidischen Metrik d_2 abgeschlossen ist genau dann, wenn A abgeschlossen ist bzgl. der Summen-Metrik d_1 .

275) Man zeige, dass eine Menge $A \subseteq \mathbb{R}^2$ bzgl. der Euklidischen Metrik d_2 abgeschlossen ist genau dann, wenn A abgeschlossen ist bzgl. der Maximums-Metrik d_{∞} .

276–278) Man stelle den Definitionsbereich und den Wertebereich folgender Funktionen fest und beschreibe die Höhenlinien:

276)

(a)
$$z = x^2 - y^2$$
, (b) $z = \sqrt{1 - \frac{x^2}{4} - \frac{y^2}{9}}$.

277)

(a)
$$z = xy$$
, (b) $z = \frac{x}{y}$.

(a)
$$z = x^2 y$$
, (b) $z = \frac{x}{y^2}$.

279) Gegeben sei die Polynomfunktion $f(x,y) = xy^2 - 10x$. Man bestimme die Gleichungen ihrer Schnittkurven mit den senkrechten Ebenen $x = x_0$ bzw. $y = y_0$ sowie die Höhenlinien für $z = z_0$ und skizziere alle drei Kurvenscharen. Mittels eines Computeralgebrasystems ermittle man eine 3D-Darstellung der gegebenen Funktion.

280) Wie Bsp 279 mit der Funktion $f(x, y) = x^2y + 2x - y$.

281) Gegeben sei die quadratische Form $q(\mathbf{x}) = q(x,y) = 4x^2 + 2bxy + 25y^2$ mit $b \in \mathbb{R}$. Wie lautet die zugehörige symmetrische Matrix A, sodass $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$? Für welche Werte von b ist die Form positiv definit?

282) Bestimmen Sie einen Wert $a \in \mathbb{Z}$, sodass die quadratische Form $3x^2 + axy + 2xz + 2y^2 + 2yz + 2z^2$ positiv definit ist.

283) Wie 282 für $x^2 + axy + 3xz + y^2 - 2yz + 4z^2$.

284) Bestimmen Sie einen Wert $a \in \mathbb{Z}$, sodass die quadratische Form $-x^2 + axy - 3xz + y^2 - 2yz + 4z^2$ negativ definit ist.

285–290) Bestimmen Sie das Definitheitsverhalten der folgenden Matrizen:

285)
$$A = \begin{pmatrix} 4 & 2 & 2 \\ 2 & 2 & 3 \\ 2 & 3 & 14 \end{pmatrix}$$

286)
$$A = \begin{pmatrix} -2 & -1 & 4 \\ -1 & -2 & 1 \\ 4 & 1 & -10 \end{pmatrix}$$

287)
$$A = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -3 & -7 \\ 1 & -7 & -20 \end{pmatrix}$$

288)
$$A = \begin{pmatrix} -3 & 3 & 1 \\ 3 & -4 & 2 \\ 1 & 2 & -10 \end{pmatrix}$$

289)
$$A = \begin{pmatrix} 3 & -3 & -1 \\ -3 & 4 & -2 \\ -1 & -2 & 10 \end{pmatrix}$$

290)
$$A = \left(\begin{array}{rrr} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{array} \right)$$

Hinweis: Setzen Sie den Vektor (1,0,0) und den Vektor (0,0,1) in die der Matrix entsprechenden quadratischen Form ein.

291) Eine Funktion $f(x_1, ..., x_n)$ heißt **homogen** vom Grad r, falls für jedes feste $\lambda > 0$ und alle $(x_1, ..., x_n)$ aus dem Definitionsbereich von f, für die $(\lambda x_1, ..., \lambda x_n)$ auch im Definitionsbereich von f liegt, gilt:

$$f(\lambda x_1, \dots, \lambda x_n) = \lambda^r f(x_1, \dots, x_n).$$

Man beweise, dass die beiden Produktionsfunktionen $f(x,y) = cx^{\alpha}y^{1-\alpha}$ und $g(x,y) = (cx^{\alpha} + dy^{\alpha})^{1/\alpha}$ (x Arbeit, y Kapital, c, d, α konstant) homogene Funktionen vom Homogenitätsgrad r = 1 sind.

292) Man prüfe nach, ob die Funktionen

(a)
$$f(x,y,z) = x + (yz)^{1/2}$$
 (für $y,z \ge 0$) (b) $f(x,y) = x^2 + y$

(c)
$$f(x,y) = ax^b y^c \text{ (mit } a,b,c \in \mathbb{R}, x,y > 0)$$

homogen sind.

293–294) Man untersuche für beliebige $\alpha, \beta \in \mathbb{R}$ den Grenzwert $\lim_{t\to 0} f(\alpha t, \beta t)$. Ist die Funktion f(x, y) an (0, 0) stetig?

293)

$$f(x,y) = \frac{|y|}{|x|^3 + |y|}$$
 für $(x,y) \neq (0,0)$ und $f(0,0) = 1$

294)

$$f(x,y) = \frac{2y^2}{|x| + y^2}$$
 für $(x,y) \neq (0,0)$ und $f(0,0) = 0$

295) Sei

$$f(x,y) = \frac{x\cos\frac{1}{x} + y\sin y}{2x - y}$$

für $0 \neq 2x \neq y$. Man untersuche und vergleiche die iterierten Grenzwerte

$$\lim_{y \to 0} \lim_{x \to 0} f(x, y) \quad \text{und} \quad \lim_{x \to 0} \lim_{y \to 0} f(x, y).$$

Existiert der Grenzwert $\lim_{(x,y)\to(0,0)} f(x,y)$?

296) Sei

$$f(x,y) = \frac{x + y\cos\frac{1}{y}}{x + y}$$

für $0 \neq y \neq -x$. Man untersuche und vergleiche die iterierten Grenzwerte

$$\lim_{y \to 0} \lim_{x \to 0} f(x, y) \qquad \text{und} \qquad \lim_{x \to 0} \lim_{y \to 0} f(x, y).$$

Existiert der Grenzwert $\lim_{(x,y)\to(0,0)} f(x,y)$?

297) Sei

$$f(x,y) = x^{1/y}$$

für y > 0 und $x \ge 0$. Man untersuche und vergleiche die iterierten Grenzwerte

$$\lim_{y \to 0} \lim_{x \to 1} f(x, y) \qquad \text{und} \qquad \lim_{x \to 1} \lim_{y \to 0} f(x, y).$$

Existiert der Grenzwert $\lim_{(x,y)\to(1,0)} f(x,y)$?

298) In welchen Punkten $(x,y) \in \mathbb{R}^2$ ist die Funktion

$$f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^4} & \text{für } (x,y) \neq (0,0) \\ 0 & \text{für } (x,y) = (0,0) \end{cases}$$

stetig?

299–300) Man untersuche die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ auf Stetigkeit (Hinweis: Es gilt $a+b \ge 2\sqrt{ab}$ für $a,b \ge 0$.):

299)

$$f(x,y) = \frac{xy}{|x| + |y|}$$
 für $(x,y) \neq (0,0)$ und $f(0,0) = 0$.

300)

$$f(x,y) = \frac{xy^2 + x^2y}{x^2 + y^2}$$
 für $(x,y) \neq (0,0)$ und $f(0,0) = 0$.

301) Sei $f: \mathbb{R}^3 \to \mathbb{R}$ definiert durch $f(x, y, z) = \frac{1 - \cos(xy)}{xyz} + \frac{\sin z}{1 + x^2 + y^2}$. In welchen Punkten des Definitionsbereiches ist f stetig?

302) Zeigen Sie: Die Komposition stetiger Funktionen $f: I \subseteq \mathbb{R} \to \mathbb{R}^n, g: M \subseteq \mathbb{R}^n \to \mathbb{R}^m$ mit $f(I) \subseteq M$ is wiederum stetig.

303) Man untersuche die Stetigkeit der Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ im Punkt (0,0).

$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2} & \text{für } (x,y) \neq (0,0) \\ 0 & \text{für } (x,y) = (0,0) \end{cases}$$

304) Man untersuche die Stetigkeit der Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ im Punkt (0,0).

$$f(x,y) = \begin{cases} \frac{x^3 + y^3}{x^2 + y^2} & \text{für } (x,y) \neq (0,0) \\ 0 & \text{für } (x,y) = (0,0) \end{cases}$$

305)

- (a) Für die Funktion $f(x,y) = \sqrt{1-x^2-y^2}$ berechne man die partiellen Ableitungen f_x , f_y und die Gleichung der Tangentialebene an der Stelle $(x_0, y_0) = (0.2, 0.3)$.
- (b) Man berechne alle partiellen Ableitungen erster und zweiter Ordnung für die Funktion $f(x,y) = x^2 \sin y + \cos(x+2y)$.

306) Man prüfe nach, ob die gemischten partiellen Ableitungen f_{xy} und f_{yx} für die folgenden Funktionen f(x,y) übereinstimmen:

(a)
$$f(x,y) = \frac{x^2}{1+u^2}$$
, (b) $f(x,y) = x^3 e^{y^2}$, (c) $f(x,y) = \sqrt{xy^3}$.

307-308) Man bestimme den Definitionsbereich der Vektorfunktion $\mathbf{x}(t)$, sowie die Ableitung $\mathbf{x}'(t)$, we sie existient:

307)

$$\mathbf{x}(t) = \left(\left(\frac{2t}{\sqrt{1 - 3t^2}} \right)^{\frac{5}{4}}, \sin\left(\frac{1}{1 + t^2}\right) \right)$$

308)

$$\mathbf{x}(t) = \left(\sin(1+\cos(t)), \frac{t^{\frac{5}{4}}}{\sqrt{1-t^2}}\right)$$

309) Das elektrostatische Potential einer Punktladung Q im Koordinatenursprung ist durch

$$\varphi_1(x, y, z) = \frac{Q}{4\pi\epsilon_0} \frac{1}{\sqrt{x^2 + y^2 + z^2}}$$

gegeben, für das Potential eines Dipols mit dem Dipolmoment $\mathbf{p} = (p, 0, 0)$ gilt:

$$\varphi_2(x, y, z) = \frac{1}{4\pi\epsilon_0} \frac{px}{(x^2 + y^2 + z^2)^{3/2}}.$$

(Dabei sind Q, p und ϵ_0 Konstante.) In beiden Fällen berechne man das zugehörige elektrische Feld **E** nach der Formel $\mathbf{E} = -\operatorname{grad}\varphi$.

310-313) Man bestimme die partiellen Ableitungen erster Ordnung der folgenden Funktio-

310)
$$f(x,y) = \operatorname{Arctan}\left(\frac{4x^2y^2}{1+x+y}\right)$$
 311) $f(x,y,z) = \frac{y+\sqrt{xz}}{1+\sin^2(xyz)}$

311)
$$f(x,y,z) = \frac{y + \sqrt{xz}}{1 + \sin^2(xyz)}$$

312)
$$f(x,y) = \operatorname{Arctan}\left(\frac{2x^3y}{y-x^3}\right)$$
 313) $f(x,y,z) = \frac{\sqrt{x} + y^3z^2}{1 + \cos^2(1+x)}$

313)
$$f(x,y,z) = \frac{\sqrt{x+y^3z^2}}{1+\cos^2(1+x)}$$

314–317) Man bestimme die Funktionalmatrix zu $\mathbf{f}:\mathbb{R}^3\to\mathbb{R}^2$:

314)
$$\mathbf{f} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \sin(x+y-z) \\ \cos\left(\frac{xy}{z}\right) \end{pmatrix}$$
 315) $\mathbf{f} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \frac{x}{y^2z} \\ x^yz^2 \end{pmatrix}$

316)
$$\mathbf{f} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \sqrt{\frac{x-z}{y+1}} \\ z \cdot e^{-\frac{x}{y}} \end{pmatrix}$$
 317) $\mathbf{f} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \ln(\operatorname{Arctan}(x+y^2)) \\ x\cos(y^2 - \sqrt{x}) \cdot \tan(xyz) \end{pmatrix}$

318) Duch $z = \frac{xy}{x+y}$ ist eine Fläche im \mathbb{R}^3 gegeben. Die Beschränkung von x und y auf die Werte $x = e^t$ und $y = e^{-t}$ $(t \in \mathbb{R})$ liefert eine Kurve auf dieser Fläche. Man bestimme $\frac{dz}{dt}$ mittels Kettenregel und mache die Probe, indem man zuerst x und y in z einsetzt und anschließend nach dem Parameter t differenziert. Wo verläuft diese Kurve auf der Fläche horizontal?

319) Es sei $g_u(u,v) = \frac{\partial}{\partial u}g(u,v) = \ln(u\sin(u)-v)$ und $g_v(u,v) = \frac{\partial}{\partial v}g(u,v) = \tan(-u+v^3)$. Man bestimme $h(t) = \frac{d}{dt}g(2t,t^2+1)$.

320) Es sei $g_u(u,v) = \frac{\partial}{\partial u}g(u,v) = e^{-u^2}$ und $g_v(u,v) = \frac{\partial}{\partial v}g(u,v) = -e^{v^3}$. Man bestimme $h(t) = \frac{d}{dt}g(t^2 - 1, 3t).$

- **321)** Mit Hilfe der Kettenregel berechne man den Wert der partiellen Ableitung der Funktion F(x,y) = f(g(x,y),h(x,y)) nach y an der Stelle (0,0), wobei $f(u,v) = u^2 + v^2$, $g(x,y) = \cos x + \sin y$ und h(x,y) = x + y + 1 ist.
- **322)** Es sei $F(x,y) = \frac{2x^4+y}{y^5-2x}$, x = 2u 3v + 1, y = u + 2v 2. Man berechne $\frac{\partial F}{\partial u}$ und $\frac{\partial F}{\partial v}$ für u = 2, v = 1 mit Hilfe der Kettenregel.
- **323)** Man bestimme die Ableitung der Funktion f(x,y) in Richtung $\frac{\binom{-1}{1}}{\lVert \binom{-1}{1} \rVert}$ im Punkt (3,2) mit

(a)
$$f(x,y) = \frac{x^2}{1+y^2}$$
, (b) $f(x,y) = x^3 e^{y^2}$, (c) $f(x,y) = \sqrt{xy^3}$.

- **324)** Man berechne die Ableitung von $f(x,y) = x^2 + 4y^2$ im Punkt $P_0(3,2)$
 - (a) in Richtung der Koordinatenachsen,
 - (b) in Richtung von (-1, -1), sowie
 - (c) in Richtung von $\operatorname{grad} f$.
- 325) In welcher Richtung erfolgt die maximale Änderung von

$$f(x, y, z) = x^2 \sin(yz) - y^2 \cos(yz)$$

vom Punkt $P_0(4, \frac{\pi}{4}, 2)$ aus und wie groß ist sie annähernd?

326) Man bestimme die lineare und die quadratische Approximation der Funktion

$$f(x,y) = x^2(y-1) + xe^{y^2}$$

im Entwicklungspunkt (1,0).

- **327)** Für die Funktion $f(x,y) = xye^{x+y}$ berechne man das Taylorsche Näherungspolynom zweiter Ordnung an der Stelle $(x_0, y_0) = (1, 1)$.
- **328)** Für die Funktion $f(x,y) = x \ln(1+xy)$ berechne man das Taylorsche Näherungspolynom zweiter Ordnung an der Stelle $(x_0, y_0) = (1, 0)$.
- **329)** Für die Funktion $f(x,y) = e^{x-y}(x+1) + x\sin(x^2-y)$ berechne man das Taylorsche Näherungspolynom zweiter Ordnung an der Stelle $(x_0,y_0)=(0,\frac{\pi}{2})$.
- **330)** Für die Funktion $f(x, y, z) = e^{x^2 + yz}(x + yz + 1)$ berechne man das Taylorsche Näherungspolynom zweiter Ordnung an der Stelle $(x_0, y_0, z_0) = (0, 0, \frac{\pi}{2})$.
- **331)** Für die Funktion $f(x, y, z) = x^3 \cos(x^2 \arctan(y z))$ berechne man das Taylorsche Näherungspolynom zweiter Ordnung an der Stelle $(x_0, y_0, z_0) = (0, 0, \frac{\pi}{2})$.
- **332)** Für die Funktion $f(x, y, z) = x \cos(x y z)$ berechne man das Taylorsche Näherungspolynom zweiter Ordnung an der Stelle $(x_0, y_0, z_0) = (1, 1, 2)$.
- 333) Man bestimme $\frac{dy}{dx}$ für folgende implizit gegebene Kurven:

(a)
$$x^{2/3} + y^{2/3} = 1$$
, für $x_0 = 0.5$, (b) $x^3 + y^3 - 2xy = 0$, für $x_0 = 1$.

334) Es sei $F(x,y) = e^x \sin y + e^y \sin x - 1 = 0$. Man berechne $\frac{dy}{dx}$ und $\frac{d^2y}{dx^2}$ im Punkt $(\pi/2,0)$.

- **335)** Es sei $F(x,y) = x^3 3xy + y^3 1 = 0$. Man berechne y' und y'' im Punkt $(1, -\sqrt{3})$.
- **336)** Man berechne y' und y'' im Punkt (1,1) der Kurve $x^3 + 3x^2y 6xy^2 + 2y^3 = 0$.
- **337)** Es sei $F(x, y, z) = x^2(2x + 3z) + y^2(3x 4z) + z^2(x 2y) xyz = 0$. Man berechne z_x und z_y .
- **338)** In welchen Punkten der Kurve $x^2 + 4xy + 16y^2 = 27$ sind die Tangenten horizontal, in welchen vertikal?
- **339)** Bestimmen Sie alle Tangenten mit Anstieg ± 1 an die Kurve $2x^2 4xy + 9y^2 = 36$.
- **340)** Man ermittle die Gleichungen einer Tangente aus dem Punkt (0,0) an die durch $y^3 = x^3 2x + 2$ bestimmte Kurve.
- 341–351) Man bestimme alle relativen Extrema und Sattelpunkte der Funktion f(x,y) im Inneren des angegebenen Bereichs und alle absoluten Extrema im gesamten, angegebenen Bereich. Hinweis: Eine symmetrische 2x2-Matrix ist genau dann indefinit, wenn ihre Determinante negativ ist.
- **341)** $f(x,y) = (x^2 + y^2)^2 2(x^2 y^2)$ für $x, y \in \mathbb{R}$.
- **342)** $f(x,y) = 2x^3 5xy^2 + 3y$ für $x, y \in \mathbb{R}$.
- **343)** $f(x,y) = x^2 + xy + y^2 + x + y + 1$ für $x, y \in \mathbb{R}$.
- **344)** $f(x,y) = (x^2 + 5y^2)e^{-x^2 y^2}$ für $x, y \in \mathbb{R}$.
- **345)** $f(x,y) = (x^2 + 3y^2)e^{-x^2 2y^2}$ für $x, y \in \mathbb{R}$.
- **346)** $f(x,y) = \sin(x+y) + \sin x + \sin y$ für $0 \le x, y \le \pi/2$.
- **347**) $f(x,y) = \sin(x+y) + \sin x + \sin y$ für $0 \le x, y \le \pi$.
- **348)** $f(x,y) = \sin(x+y) + \sin x \sin y$ für $0 \le x, y \le \pi/2$.
- **349)** $f(x,y) = \sin(x+y) + \sin x \sin y$ für $0 \le x, y \le \pi$.
- **350)** $f(x,y) = \cos(x+y) + \sin x + \sin y$ für $0 \le x, y \le \pi/2$.
- **351)** $f(x,y) = \cos(x+y) + \sin x + \sin y$ für $0 \le x, y \le \pi$.
- **352)** Man bestimme die relativen Extrema der Funktion $f(x,y) = 4(x-2)(y^2+10y) + 3x^3$.
- **353)** Man bestimme die Extrema von $f(x,y) = x^2 + 3xy + 2y^2$.
- **354)** Gesucht ist das absolute Maximum der Funktion f(x,y) = xy(3-x-y) auf dem Definitionsbereich $D = \{(x,y)|x \ge 0, y \le 0, y \le 3-x\}$.

(Anleitung: Man skizziere den Definitionsbereich D in der (x,y)-Ebene, bestimme dessen Rand und ermittle alle Funktionswerte auf dem Rand. Das absolute Maximum ist dann unter den relativen Maxima im Inneren von D sowie unter den Funktionswerten am Rand von D zu suchen.)

- 355–361) Berechnen Sie die folgenden Bereichsintegrale:
- **355)** $\iint_B (xy + x^2 y^2) dx dy$, wobei $B \subset \mathbb{R}^2$ der Rechtecksbereich sei, welcher durch die Eckpunkte (-1,1), (5,1), (5,5) und (-1,5) bestimmt ist.
- **356)** $\iint_B (x + 2xy y^2) dx dy$, wobei $B \subset \mathbb{R}^2$ der Rechtecksbereich sei, welcher durch die Eckpunkte (3,1), (4,1), (4,5) und (3,5) bestimmt ist.
- **357)** $\iint_B e^{2x}(y+1) dx dy$, wobei $B \subset \mathbb{R}^2$ der Rechtecksbereich sei, welcher durch die Eckpunkte (-2,0), (4,0), (4,3) und (-2,3) bestimmt ist.

358) $\iint_B \sin(x+y) \, dx \, dy$, wobei $B \subset \mathbb{R}^2$ das Quadrat mit den Eckpunkten $(0,0), (0,\pi), (\pi,0), (\pi,\pi)$ sei.

359) $\iint_B x^2 \ln(y) \, dx \, dy$, wobei $B \subset \mathbb{R}^2$ der Bereich $\{(x,y) \mid 1 \le y \le 2 \text{ und } |x| \le 2\}$ sei.

360) $\iiint\limits_B (xy^2z+2z^2)\,dx\,dy\,dz, \text{ wobei } B\subset\mathbb{R}^3 \text{ der Bereich } \{(x,y,z)\mid 1\leq x\leq 2, |y|\leq 2 \text{ und } 0\leq z\leq 1\} \text{ sei.}$

361) $\iiint\limits_{B} \left(\mathrm{e}^{2x}(y+1) + x \sin(z) \right) \, dx \, dy \, dz, \text{ wobei } B \subset \mathbb{R}^3 \text{ der Bereich } \{(x,y,z) \mid \ 0 \leq x \leq 2, |y| \leq 1 \text{ und } 0 \leq z \leq \pi \} \text{ sei.}$

362) Durch Einsetzen bestätige man, dass die allgemeine Lösung der Differentialgleichung

$$x^2 \frac{d^2y}{dx^2} - 6y = 12\ln x$$

durch

$$y(x) = C_1 x^3 + \frac{C_2}{x^2} - 2 \ln x + \frac{1}{3}, \quad C_1, C_2 \in \mathbb{R}$$

gegeben ist. Wie lautet die partikuläre Lösung zu den Anfangsbedingungen y(1) = 2/3, y'(1) = -1?

363) Man betrachte die Eulersche Differentialgleichung

$$x^2y'' + 3xy' + y = 0.$$

Zeigen Sie, dass $C_1 \frac{1}{x} + C_2 \frac{\ln x}{x}$ die allgemeine Lösung dieser Differentialgleichung ist. Wie lautet die partikuläre Lösung zu den Anfangsbedingungen y(1) = 3, y'(1) = -2?

364) Man ermittle das Richtungsfeld der Differentialgleichung $y' = \frac{y}{x}$ und überlege, ob es durch jeden Punkt der (x, y)-Ebene genau eine Lösung der Gleichung gibt.

365) Gegeben ist die Differentialgleichung y' = axy mit a reell. Skizzieren Sie das Richtungsfeld und die Isoklinen für a = -2, a = -1 und a = 1.

366) Skizzieren Sie mit Hilfe der Isoklinen das Richtungsfeld der Differentialgleichung

$$y' = -\frac{xy}{x^2 + 1}$$

und finde die allgemeine Lösung.

367) Skizzieren Sie mit Hilfe der Isoklinen das Richtungsfeld der Differentialgleichung $y' = \frac{x}{x-y}$.

368) Man löse die homogene lineare Differentialgleichung $y' - y \tan x = 0$.

369) Man löse die inhomogene lineare Differentialgleichung $xy' + y = x^2 + 3x + 2$.

370) Man bestimme die Lösung der Differentialgleichung $y' + y \cos x = \sin x \cos x$ zur Anfangsbedingung y(0) = 1.

371--376) Man bestimme die allgemeine Lösung der Differentialgleichung bzw. die Lösung der Anfangswertaufgabe:

371)
$$y' = y \sin x$$

372)
$$y - xy' + 1 = 0$$

373)
$$y' + \frac{1}{1-x}y = x^2$$
, $y(0) = 1$

374)
$$y' + \frac{1}{1+2x}y = 2x - 3, \ y(0) = 2$$

375)
$$y' = \sin^2 x \cos^2 y$$

376)
$$xy' = y \ln \frac{y}{x}$$

377) Man löse die folgenden linearen homogenen Differentialgleichungen:

(a)
$$y'' - 8y' - 20y = 0$$
,

(b)
$$y'' + 8y' + 16y = 0$$
,

(c)
$$y'' - 8y' + 25y = 0$$
.

378) Man löse die folgenden linearen homogenen Differentialgleichungen:

(a)
$$y'' - 6y' - 27y = 0$$
,

(b)
$$y'' + 6y' + 9y = 0$$
,

(c)
$$y'' - 6y' + 25y = 0$$
.

379) Man löse die folgenden linearen homogenen Differentialgleichungen:

(a)
$$y'' - 12y' + 36y = 0$$
,

(b)
$$y'' + 12y' + 60y = 0$$
,

(c)
$$y'' - 12y' + 25y = 0$$
.

380) Man löse die folgenden linearen homogenen Differentialgleichungen:

(a)
$$y'' - 10y' + 100y = 0$$
,

(b)
$$y'' + 10y' + 16y = 0$$
,

(c)
$$y'' - 10y' + 25y = 0$$
.

381) Man bestimme die partikuläre Lösung der Differentialgleichung y'' + 2y' + 2y = 0 zu den Anfangsbedingungen y(0) = 1 und y'(0) = 0.

382) Gesucht ist die allgemeine Lösung der Differentialgleichung y'' - y' - 2y = x.

383-407) Lösen Sie die folgenden Differentialgleichungen.

383)
$$xy' - y = x^3 + 3x^2 - 2x$$

384)
$$y' + \frac{y}{x} - e^x = 0$$

385)
$$y' + 2(\cot x)y + \sin 2x = 0$$

386)
$$y' + y \cot x = 5e^{\cos x}$$
 (für $x = \pi/2$ sei $y = -4$)

387)
$$(1+e^x)y'=-e^{x+y}$$

388)
$$xy' = y + x^2 \cos x$$

389)
$$y'' - y = 4e^x$$

390)
$$y'' + 7y' + 6y = \cosh(x)$$

391)
$$y'' + 4y' + 4y = e^{-2x}$$

392)
$$y''' - 5y'' + 8y' - 4y = e^{2x}$$

393)
$$y'' - 2y' = e^x \sin x$$

394)
$$y'' + y = \cos x$$

395)
$$y'' - 6y' + 9y = x^2 e^{3x}$$

396)
$$y'' + 3y' + y = x3^x$$

397)
$$y'' - y' + y = x$$

398)
$$y' = -\frac{1}{x}y + \frac{\ln x}{x}$$

399)
$$y' + 2xy = 2xy^3$$

400)
$$y' = (1 - 2x)y + (1 + x^2)$$

401)
$$y' = y + xy + 1$$

402)
$$y''' + y'' = 6x^2 + 4$$

403)
$$x^2y'' - 5xy' + 5y = 0$$
. Ansatz: $y = x^r$.

404)
$$x^3y''' - 3x^2y'' + 6xy' - 6y = 0$$
. Ansatz: $y(x) = x^r$.

405)
$$x^2y'' + 3xy' - 3y = 0$$
. Ansatz: $y = x^r$.

406) $x^2y'' - xy' - 3y = x$. Ansatz für $y_h(x)$: $y = x^r$. Zur Bestimmung von $y_p(x)$ versuchen Sie die Standardansätze.

407) $x^2y'' + xy' - 3y = 5x^2$. Ansatz für $y_h(x)$: $y = x^r$. Zur Bestimmung von $y_p(x)$ versuchen Sie die Standardansätze.