2.

3.

4.

5.

Matrikelnummer:

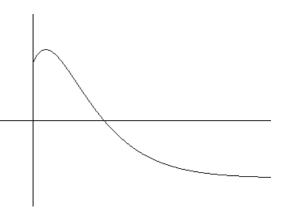
Name:

Analysis für Inf. und Winf. (Prof. Karigl) Musterprüfung

1. Man diskutiere die Funktion f: $\mathbb{R}_0^+ \to \mathbb{R}$ mit

$$f(x) = \frac{10x + 3}{e^{2x}} - 1$$

(Monotonie, relative Extrema, Limiten für $x \to 0$ und $x \to \infty$). Ferner zeige man mit Hilfe des Nullstellensatzes, dass f eine positive Nullstelle besitzt und berechne diese näherungsweise (auf eine Nachkommastelle genau).



2. Man berechne das Bereichsintegral

$$\iint_{\mathbf{B}} \left(1 + \frac{10x}{1 + x^2} + y\right) \mathrm{d}x \mathrm{d}y$$

über das Quadrat B, welches durch -1 ≤ x ≤ 1 und -1 ≤ y ≤ 1 in der (x,y)-Ebene festgelegt ist.

3. Man bestimme die allgemeine Lösung der linearen inhomogenen Differentialgleichung zweiter Ordnung

$$y'' - y' - 2y = -12x$$
.

- 4. Die Mittelwertsätze der Differential- und der Integralrechnung:
 - Mittelwertsatz der Differentialrechnung: Formulierung, Zeichnung
 - Mittelwertsatz der Integralrechnung: Formulierung, Zeichnung
 - Ferner berechne man den Mittelwert einer Funktion f(x) auf einem Intervall [a, b] für ein selbst gewähltes konkretes Beispiel.

5. Konvergenz von Folgen und Reihen: Beantworten Sie die folgenden Fragen bzw. überprüfen Sie die nachstehenden Aussagen (bitte ankreuzen; es können keine, genau eine oder auch mehrere Antworten zutreffend sein):

Eine Zahl a heißt Häufungswert der Folge (a _n), falls gilt	
Jeder Häufungswert a einer Folge (a _n) ist auch Grenzwert dieser Folge.	○ ja ○ nein
Jeder Grenzwert a einer Folge (a _n) ist auch Häufungswert dieser Folge.	○ ja ○ nein
Die Monotonie einer Folge (a _n) ist für ihre Konvergenz	o notwendig o hinreichend
Die Beschränktheit einer Folge (a _n) ist für ihre Konvergenz	o notwendig o hinreichend
Eine unendliche Reihe Σa_n ist konvergent, wenn die	 Folge (a_n) konvergent ist, Partialsummenfolge (s_n) konvergent ist, Folge (a_n) eine Nullfolge ist.
Die geometrische Reihe Σa ₀ .q ⁿ (mit a ₀	$\bigcirc q < -1 \bigcirc q = -1 \bigcirc -1 < q < 0$
≠ 0) ist konvergent für	$\bigcirc q = 0 \bigcirc 0 < q < 1 \bigcirc q = 1 \bigcirc q > 1$
Die Reihe $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - + \dots$ ist	konvergentabsolut konvergentbedingt konvergentdivergent

Zeit: 100 Minuten