Übungsblatt 9

- 1. Sei Φ eine gleichmäßig integrierbare Menge \mathbb{R}^d -wertiger Zufallsvariablen auf dem Maßraum $(\Omega, \mathcal{F}, \mu)$. Definiere Φ' als Menge aller \mathbb{R}^d -wertigen messbaren Zufallsfunktionen X auf (Ω, \mathcal{F}) , für die ein $Y \in \Phi$ existiert, sodass $||X|| \leq ||Y|| \mu$ -f.s. gilt. Zeige, dass auch Φ' gleichmäßig integrierbar ist.
- 2. Sei $n \in \mathbb{N}$ und Φ_1, \ldots, Φ_n gleichmäßig integrierbare Mengen \mathbb{R}^d -wertiger Zufallsvariablen auf dem Maßraum $(\Omega, \mathcal{F}, \mu)$. Zeige, dass $\bigcup_{i=1}^n \Phi_i$ und $\{\sum_{i=1}^n X_i \mid X_1 \in \Phi_1, \ldots, X_n \in \Phi_n\}$ gleichmäßig integrierbar sind.
- 3. Sei Φ eine nichtleere Menge \mathbb{R}^d -wertiger Zufallsvariablen auf dem Wahrscheinlichkeitsraum $(\Omega, \mathcal{F}, \mathbb{P})$ und sei $\varphi \colon [0, \infty) \to [0, \infty)$ eine messbare Funktion, die $\lim_{x \to \infty} \varphi(x)/x = \infty$ erfüllt. Zeige, dass Φ gleichmäßig integrierbar ist, wenn $\sup_{X \in \Phi} \mathbb{E}[\varphi(||X||)] < \infty$ gilt.
- 4. Seien Y_1, \ldots, Y_n unabhängige, reellwertige, quadratisch integrierbare Zufallsvariablen mit Erwartungswert 0. Definiere $S_{\ell} = \sum_{k=1}^{\ell} Y_k$ für alle $\ell \in \{0, 1, \ldots, n\}$. Zeige die folgende Ungleichung für alle $\lambda > 0$

$$\mathbb{P}[\max_{\ell \in \{1,\dots,n\}} |S_{\ell}| \ge \lambda] \le \frac{1}{\lambda^2} \sum_{k=1}^{n} \operatorname{Var}(Y_k).$$

Hinweis: Verwende Beispiel 4 und 6 aus der 7. Übung und die Maximalungleichung.

5. Sei μ ein positives σ -endliches Maß auf den Borelmengen von $(0,\infty)$ und definiere $\Phi(x):=\mu((0,x])\in [0,\infty]$ für alle $x\geq 0$ und $\Phi(\infty):=\mu((0,\infty))$. Sei außerdem X eine $[0,\infty]$ -wertige Zufallsvariable. Beweise, dass

$$\mathbb{E}[\Phi(X)] = \int_{(0,\infty)} \mathbb{P}[X \ge x] \, \mu(dx),$$

und folgere daraus, dass für alle p > 0

$$\mathbb{E}[X^p] = p \int_{(0,\infty)} x^{p-1} \mathbb{P}[X \ge x] \, dx$$

gilt. Zeige, dass die Formeln auch mit $\mathbb{P}[X > x]$ anstatt von $\mathbb{P}[X \ge x]$ gelten, wenn μ oder die Verteilung von X keine Atome besitzt.

 $\textit{Hinweis: Wende den Satz von Fubini auf } (\mu \otimes \mathbb{P}) \Big(\{ (x,\omega) \in (0,\infty) \times \Omega \, | \, X(\omega) \geq x \} \Big) \ \textit{an.}$

- 6. Sei X eine \mathbb{R}^d -wertige Zufallsvariable auf dem Wahrscheinlichkeitsraum $(\Omega, \mathcal{F}, \mathbb{P})$ und $(X_n)_{n \in \mathbb{N}}$ eine Folge integrierbarer, \mathbb{R}^d -wertiger Zufallsvariablen auf $(\Omega, \mathcal{F}, \mathbb{P})$. Zusätzlich sei $\mathcal{G} \subseteq \mathcal{F}$ eine Sub- σ -Algebra.
 - (a) Konvergiere $X_n \xrightarrow{L^1} X$. Zeige, dass auch $\mathbb{E}[X_n|\mathcal{G}] \xrightarrow{L^1} \mathbb{E}[X|\mathcal{G}]$ konvergiert.
 - (b) Konvergiere $X_n \xrightarrow{\text{f.s.}} X$. Welche zusätzliche Bedingung benötigt man, damit $\mathbb{E}[X_n | \mathcal{G}] \xrightarrow{\text{f.s.}} \mathbb{E}[X | \mathcal{G}]$ f.s. konvergiert?

Zum Termin: 14.12.2015