Institute for Analysis and Scientific Computing

Assistant Prof. Lothar Nannen

Übungstermin: 7.10.2014 23. September 2014

Übung zur Numerischen Mathematik A/B – Übung 1

Aufgabe 1:

Für eine Folge $(x_t)_{t\in\mathbb{N}}$ aus [0,1] gelte $|\frac{1}{2}-x_{t+1}|\leq |\frac{1}{2}-x_t|^p$ für $t\geq 2$ mit p>1. Wie groß muss t sein, damit $|\frac{1}{2}-x_t|$ im double precision standard 0 ist?

Aufgabe 2:

- a) Seien $f, g : \mathbb{R} \to \mathbb{R}$ und es gelte $f \in \mathcal{O}(h^p)$ und $g \in \mathcal{O}(h^q)$ für $h \to 0$ und $p, q \in \mathbb{N}$. Zeigen Sie:
 - (a) $(f+g) \in \mathcal{O}(h^{\min(p,q)})$ für $h \to 0$ und
 - (b) $(f \cdot g) \in \mathcal{O}(h^{p+q})$ für $h \to 0$.
 - (c) $(f \circ g) \in \mathcal{O}(h^{pq})$ für $h \to 0$.
- b) Zur numerischen Berechnung von Ableitungen verwendet man häufig die Differenzenquotienten

$$f'(x) \approx \frac{f(x+h) - f(x-h)}{2h},\tag{1a}$$

$$f''(x) \approx \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$
 (1b)

Beweisen Sie, dass für hinreichend glatte Funktionen f für $h \to 0$ gilt

$$f'(x) - \frac{f(x+h) - f(x-h)}{2h} = \mathcal{O}(h^2), \quad f''(x) - \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} = \mathcal{O}(h^2).$$

Aufgabe 3:

Eine Matrix-Matrix Multiplikation erfordert relativ viele Rechenoperationen. Der vom Mathematiker Volker Strassen 1969 publizierte Strassen-Algorithmus reduziert die Anzahl der Rechenoperationen. Der Einfachheit halber sei $A, B \in \mathbb{R}^{2^m \times 2^m}$ und das Produkt C = AB sei zu berechnen. Dafür werden die Matrizen in vier Blöcke der Größe 2^{m-1} zerlegt

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} \quad \text{und} \quad C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}.$$

Dann gilt

$$C_{11} = M_1 + M_4 - M_5 + M_7, (2a)$$

$$C_{12} = M_3 + M_5,$$
 (2b)

$$C_{21} = M_2 + M_4, (2c)$$

$$C_{22} = M_1 - M_2 + M_3 + M_6. (2d)$$

mit

$$M_1 := (A_{11} + A_{22})(B_{11} + B_{22}),$$
 (3a)

$$M_2 := (A_{21} + A_{22}) B_{11},$$
 (3b)

$$M_3 := A_{11} (B_{12} - B_{22}),$$
 (3c)

$$M_4 := A_{22} (B_{21} - B_{11}),$$
 (3d)

$$M_5 := (A_{11} + A_{12}) B_{22},$$
 (3e)

$$M_6 := (A_{21} - A_{11})(B_{11} + B_{12}),$$
 (3f)

$$M_7 := (A_{12} - A_{22})(B_{21} + B_{22}).$$
 (3g)

Im Strassen-Algorithmus werden die Multiplikationen in (3) wiederum (rekursiv) mit der obigen Darstellung berechnet.

- a) Sei $A, B \in \mathbb{R}^{n \times n}$. Ermitteln Sie die Anzahl von Multiplikationen und Additionen zur Berechnung des Matrixproduktes AB nach Definition, d.h. ohne Verwendung des Strassen-Algorithmus.
- b) Sei $A, B \in \mathbb{R}^{n \times n}$ und $n = 2^m$. Berechnen Sie die Anzahl der Multiplikationen des Strassen-Algorithmus zur Berechnung von AB.

Aufgabe 4:

Zur Berechnung der Euler'schen Zahl e könnte man so vorgehen, dass man den Grenzwert

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \tag{4}$$

bzw.

$$e = \lim_{n \to \infty} \sum_{k=0}^{n} \frac{1}{k!} \tag{5}$$

approximiert, indem man n geeignet wählt.

- a) Wieviele Rechenoperationen benötigen Sie in Abhängigkeit von n zur Approximation von e bei beiden Varianten.
- b) Schätzen Sie für beide Varianten den Approximationsfehler $\Delta_{\rm app}(n) := e \left(1 + \frac{1}{n}\right)^n$ bzw. $\Delta_{\rm app}(n) := e \sum_{k=0}^n \frac{1}{k!}$ in Abhängigkeit von n ab.

Hinweis: Verwenden Sie für die erste Variante den Mittelwertsatz der Differentialrechnung für eine geeignete Funktion f auf dem Intervall [0, 1/n].

Aufgabe 5:

Untersuchen Sie, ob folgende Funktionsauswertungen gut konditioniert sind und geben Sie die relativen Konditionszahlen an.

a)
$$f(x) = \frac{1}{1+3x} - \frac{1-2x}{1+x}$$
 für $x \in [-\frac{1}{4}, \frac{1}{4}]$

b)
$$f(x) = 1 - \sqrt{\frac{1+x}{x}} \text{ für } x > 0$$

c)
$$f(x) = \sqrt{1+x} - \sqrt{1-x}$$
 für $x \in [-\frac{1}{2}, \frac{1}{2}]$