MATHEMATISCHE STATISTIK

http://www.statistik.tuwien.ac.at/lv-guide

VO: Prof. Felsenstein

SS 2013

ÜBUNGSBLATT 8

38) X_1, \ldots, X_n sei eine Stichprobe einer Geometrischen Verteilung G_θ . Man gebe Konstanten a und b an, sodaß die Schätzfunktion

$$T := b \sum_{i=1}^{n-1} X_i (aX_{i+1} - X_i)$$

erwartungstreu für $\tau = 1/\theta$ ist. Ist T konsistent für θ ?

39) Für CR-effiziente Schätzung sind Regularitätsbedingungen erforderlich:

Die Stichprobe X_1, \ldots, X_n stamme von einer stetigen Gleichverteilung $X_i \sim U_{0,\theta}$.

- a) Man überlege sich, wo bei der Berechnung der CR-Schranke die Voraussetzungen nicht erfüllt sind.
- b) Asymptotisch ist der Maximum-Likelihood-Schätzer $\hat{\theta}$ nicht normalverteilt. Man gebe die Grenzverteilung von $n(\hat{\theta} \theta)$ für $n \to \infty$ an.
- 40) Zu den folgenden Modellen (Stichprobe vom Umfang n) bestimme man den Maximum-Likelihood-Schätzer des Parameters $\hat{\theta}$ und prüfe, ob die Schätzung RC-effizient ist.
 - a) Binomial verteilung $B_{n,\theta}$
 - b) Poisson-Verteilung, P_{θ}
 - c) Exponential verteilung, Ex_{θ}
 - d) Normalverteilung $N(\theta, \sigma^2)$, Varianz σ^2 bekannt,
 - e) Normalverteilung $N(\mu, \theta)$, Mittel μ bekannt
- 41) Zu einer Stichprobe einer Laplace-Verteilung La $_{\theta}$ mit der Dichte

$$f(x|\theta) = \frac{1}{2\theta} \exp\{-|x|/\theta\}$$
 $\theta > 0$.

Für θ sowie θ^r für r > 1 und $(1 + \theta)^{-1}$ sollen die UMVU-Schätzer bestimmt werden. Welche dieser Schätzer erreichen die RC-Schranke, sind also RC-effizient?

42) Für die Exponential-verteilte Stichprobe $X_1, \ldots, X_n, X_i \sim Ex_{\theta}$ mit konjugierter a-priori Verteilung für θ konstruiere man den a-posteriori Bayes-Schätzer für θ und für die Zuverlässigkeitsfunktion

$$q(\theta) = P_{\theta}(X > t)$$

bei festem t.