MULTIVARIATE STATISTIK

http://www.statistik.tuwien.ac.at/lv-guide

Blatt 9

Wintersemester 2012/13

- 48) Man bestimme zum Modell aus Beispiel 47 das Bestimmtheitsmaß und berechne 95%-tige Konfidenzbereiche für θ_i .
- **49)** Für Beobachtungen Y_i und Regressoren x_i (File: U9_Daten49)

vergleiche man das lineare Regressionsmodell $Y_i = \alpha + \beta x_i + \epsilon_i$ mit dem Ansatz

$$Y_i = \alpha x_i^{\beta} + \epsilon_i .$$

Man schätze die Parameter in beiden Modellen und berechne jeweils das Bestimmtheitsmaß. Welches Modell ist vorzuziehen?

- **50)** Man gebe für beide Koeffizienten α, β des linearen Modells aus Beispiel 49 je ein 90% Konfidenzintervall an und teste $H_0: \alpha = 0$ bzw. $H_0: \beta = 0$ zum Signifikanzniveau 5%.
- 51) Die Funktion g(x) bezeichne den Konfidenzstreifen (Überdeckungswahrscheinlichkeit γ) der Regressionsgeraden

$$y = \alpha + \beta x + \epsilon.$$

- a) Bei welchem Punkt (x, y) der Regressionsgeraden ist die Breite des Konfidenzstreifen minimal?
- b) Man begründe, daß g(x) eine Hyperbel darstellt.
- c) Man ermittle die Asymptoten der Hyperbel g(x).
- 52) Im Regressionsmodell $y = \alpha + \beta x + \epsilon$ sei der Fehler ϵ als stetig gleichverteilt angenommen, $\epsilon \sim U_{-1,1}$, und die Fehler ϵ_i seien unabhängig. Die Kleinste-Quadrate-Schätzer $\hat{\alpha}$ und $\hat{\beta}$ können dann auch die Maximum-Likelihood-Schätzer des Regressionsmodells sein. Unter welchen Bedingungen ist das möglich?
- 53) Das Bestimtheitsmaß des Regressionsmodells mit Regressoren x_1, \ldots, x_k sei R_k^2 . Man zeige, daß bei Hinzunahme des Regressors x_{k+1} das Bestimtheitsmaß eher größer wird, also $R_{k+1}^2 \geq R_k^2$.