1. Plenum aus Statistischer Physik

5.3 & 10.3.2010

Mathematische Grundlage

1. (Mittelwert)

 $\rho(x) = Z^{-1} \exp[-af(x)]$ ist eine normierte Wahrscheinlichkeitsverteilung einer kontinuierlichen reellen Variablen, x.

- (a) Schreiben Sie den Normierungsfaktor Z an.
- (b) Zeigen Sie, dass der Mittelwert der Funktion f(x), d.h. $\langle f(x) \rangle \equiv \int_{-\infty}^{\infty} f(x) \rho(x) dx$ durch

$$\langle f(x) \rangle = -\frac{\partial}{\partial a} \ln Z$$

gegeben ist.

2. (Laplace-Transformation)

Bestimmen Sie die Funktion $D(f_0)$ im folgenden Integral

$$\int e^{-af(x,y)} dx dy = \int e^{-af_0} D(f_0) df_0.$$

3. (Partielle Ableitung)

f und g sind Funktionen von x und y.

$$\begin{cases} f = f(x, y) \\ q = q(x, y) \end{cases}.$$

Zeigen Sie

$$\left(\frac{\partial f}{\partial x}\right)_{q} = \left(\frac{\partial f}{\partial x}\right)_{y} - \left(\frac{\partial f}{\partial y}\right)_{x} \left(\frac{\partial g}{\partial x}\right)_{y} \left(\frac{\partial g}{\partial y}\right)_{x}^{-1}$$

4. (Lagrange-Multiplikator)

Schreiben Sie Bedingungen an, unter denen die Funktion f(x,y) bei gegebener Nebenbedingung g(x,y) = c (c: Konstante) maximiert wird.

5. (Legendre-Transformation)

 $\mathcal{S}(E,\beta)$ ($\partial^2 \mathcal{S}/\partial E^2 > 0$) ist eine Funktion von E und β . Bei festem E wird die Funktion maximiert, wenn $(\partial \mathcal{S}/\partial \beta)_E = 0$. Wir nehmen an, dass die Bedingung $(\partial \mathcal{S}/\partial \beta)_E = 0$ erfüllt wird, wenn $\beta = \beta_0(E) \equiv (\partial \mathcal{S}/\partial E)_{\beta}$.

- (a) Schreiben Sie die Bedingungen für maximales $-\mathcal{S}(E,\beta)$ bei festem β an.
- (b) Schreiben Sie die Bedingungen für maximales $\mathcal{F}(E,\beta) = \beta E \mathcal{S}(E,\beta)$ bei festem β an. (Die Transformation zwischen $\mathcal{S}_{\max}(E)$ und $\mathcal{F}_{\max}(\beta)$ ist die Legendre-Transformation.)