Lösungen zum 6. Tutorium VU Statistische Physik I, 01.06.2018

1. Vibrationen im Wasserstoffmolekül

Betrachten Sie eine Gas aus Wasserstoffmolekülen bei der Temperatur T=300 K. Bei niedrigen Anregungsenergien kann die Bindung der beiden Wasserstoffatome im Wasserstoffmolekül durch ein harmonisches Potential $V(R)=\alpha(R-R_0)^2$ approximiert werden, wobei $R_0=0.074$ nm den Gleichgewichtsabstand bezeichnet und α die Stärke der Bindung beschreibt. Experimentell findet man eine Schwingungsfrequenz von f=130 THz.

a) Berechnen Sie die mittlere kinetische Energie pro Teilchen sowie die mittlere Schwingungsenergie pro Teilchen.

Lösung:

Der Mittelwert der kinetischen Energie eines Moleküls ergibt mithilfe des Äquipartitionstheorems

$$\frac{\langle E_{\rm kin} \rangle}{N} = \frac{3}{2} k_{\rm B} T = 0.039 \,\text{eV}.$$

Unter Vernachlässigung der Rotations-Vibrations-Kopplung (konstantes Trägheitsmoment) ergibt sich für die mittlere Schwingungsenergie (kinetische plus potentielle Energie)

$$\frac{\langle E_{\text{vib}} \rangle}{N} = k_{\text{B}}T = 0.026 \,\text{eV}.$$

b) Laut Quantenmechanik können die Schwingungszustände des Wasserstoffmoleküls nur diskrete Energien $E_n = \hbar \omega (n + 1/2)$ annehmen. Die Wahrscheinlichkeit $w(E_n)$ den Schwingungszustand mit Energie E_n zu finden ist $w(E_n) \propto \exp(-\beta E_n)$. Berechnen Sie die mittlere Schwingungsenergie pro Teilchen erneut mithilfe der Quantenmechanik.

Lösung:

Die Wahrscheinlichkeit den Schwingungszustand mit Energie E_n zu finden ist gegeben durch

$$w(E_n) = \frac{1}{Z} e^{-\beta\hbar\omega(n + \frac{1}{2})}$$

wobei

$$Z = \sum_{n=0}^{\infty} e^{-\beta\hbar\omega \left(n + \frac{1}{2}\right)} = \frac{e^{-\beta\hbar\omega/2}}{1 - e^{-\beta\hbar\omega}}.$$

Die mittlere Schwingungsenergie ergibt sich damit zu

$$\frac{\langle E_{\text{vib}} \rangle}{N} = \sum_{n=0}^{\infty} E_n w(E_n) = \frac{1}{Z} \sum_{n=0}^{\infty} \hbar \omega \left(n + \frac{1}{2} \right) e^{-\beta \hbar \omega (n + \frac{1}{2})}$$

$$= -\frac{\partial}{\partial \beta} \ln Z$$

$$= \frac{\hbar \omega}{2} + \frac{\hbar \omega}{e^{\beta \hbar \omega} - 1} = 0.27 \text{ eV} + 5 \times 10^{-10} \text{ eV}$$

Der Freiheitsgrad ist eingefroren und trägt nicht zur spezifischen Wärmekapazität bei. Nur die Nullpunktschwingung liefert einen temperaturunabhängigen Beitrag.

2. Vagabundierender Planet im interstellaren Gas

Zwischen den Sternen einer Galaxie befindet sich interstellares Gas. Nehmen Sie an, dass es sich dabei um ideales Gas aus Wasserstoffatomen mit Masse m_p und Temperatur T handelt.

a) Bestimmen Sie die kanonische Zustandssumme eines Teilchens Z_1 im leeren Raumvolumen V.

Lösung:

Die kanonische Zustandssumme ist gegeben durch

$$Z_1 = \frac{1}{h^3} \int e^{-\beta \frac{p^2}{2m}} d^3q d^3p = V \left(\frac{2m\pi}{h^2\beta}\right)^{\frac{3}{2}}$$

b) Zeigen Sie, dass mit der Fugazität z die großkanonische Zustandssumme allgemein geschrieben werden kann als $Z_{\rm GK}=e^{zZ_1}$. Bestimmen Sie die Wahrscheinlichkeit N Teilchen im Raumvolumen V zu finden, sowie mittlere Teilchenanzahl $\langle N \rangle$ in Abhängigkeit von Z_1 und z.

Lösung:

Die großkanonische Zustandssumme ununterscheidbarer nicht-wechselwirkender Teilchen lässt sich mit

$$Z_{\rm K} = \frac{1}{N!} Z_1^N$$

allgemein schreiben als

$$Z_{\text{GK}} = \sum_{N=0}^{\infty} z^N Z_{\text{K}} = \sum_{N=0}^{\infty} \frac{1}{N!} z^N Z_1^N = e^{zZ_1}.$$

Damit ergibt sich die Wahrscheinlichkeit N Teilchen im Raumvolumen V zu finden

$$w(N) = \frac{1}{Z_{GK}} \frac{1}{N!} (zZ_1)^N = \frac{1}{N!} \langle N \rangle^N e^{-\langle N \rangle}$$

mit der mittlere Teilchenanzahl $\langle N \rangle = \frac{1}{\beta} \frac{\partial}{\partial \mu} z Z_1 = z Z_1.$

c) Die Anwesenheit eines vagabundierenden Planeten im Raumvolumen V werde durch das einfache Gravitationspotential

$$\phi(\mathbf{r}) = \begin{cases} -\phi_p & \mathbf{r} \in V_p \\ 0 & \mathbf{r} \notin V_p \end{cases}$$

beschrieben, wobei das Volumen $V_p \in V$ den Einflussbereich des Planeten beschreibt und ϕ_p eine Konstante ist. Berechnen Sie das Verhältnis $\langle N \rangle' / \langle N \rangle$ zwischen mittlere Teilchenanzahl im Raumvolumen V mit Planeten $\langle N \rangle'$ und ohne Planeten $\langle N \rangle$.

Lösung:

Die kanonische Zustandssumme für das Volumen mit Planeten ist gegeben durch

$$Z_1' = \frac{1}{h^3} \int e^{-\beta \frac{p^2}{2m}} d^3q d^3p = \left((V - V_p) + e^{\beta m_p \phi_p} V_p \right) \left(\frac{2m\pi}{h^2 \beta} \right)^{\frac{3}{2}}.$$

Damit ergibt sich das Verhältnis

$$\frac{\langle N \rangle'}{\langle N \rangle} = \frac{Z_1'}{Z_1} = 1 + (e^{\beta m_p \phi_p} - 1) \frac{V_p}{V}$$

3. Absorptionsstellen in Graphen

Die Elektronen in Graphen haben aufgrund der speziellen Bandstruktur eine lineare Energie-Impuls-Beziehung $E = v_F |\mathbf{p}|$ und können daher als pseudo-relativistisches **zweidimensionales** Gas beschrieben werden, wobei die Fermi-Geschwindigkeit $v_F \approx 10^6$ m/s an die Stelle der Lichtgeschwindigkeit tritt. Machen Sie die Annahme, dass es sich bei den Elektronen um klassische Teilchen handelt.

a) Berechnen Sie die kanonische Zustandssumme Z_1 eines Teilchens, das sich in der Fläche A bewegt, sowie die Fugazität z als Funktion der Temperatur T und der mittleren Teilchendichte $n = \langle N \rangle / A$.

Lösung:

Die kanonische Zustandssumme ist gegeben durch

$$Z_1 = \frac{1}{h^2} \int e^{-\beta v_F |\mathbf{p}|} d^2q d^2p = \frac{2\pi A}{h^2} \int_0^\infty p e^{-\beta v_F p} dp = \frac{2\pi A}{h^2 \beta^2 v_F^2}$$

und damit

$$\langle N \rangle = z Z_1 = \frac{z 2\pi A}{h^2 \beta^2 v_{\rm F}^2}.$$

Daraus folgt

$$z = \frac{nh^2v_{\rm F}^2}{2\pi k_{\rm B}^2T^2}.$$

b) Innerhalb der Graphenflocke sei eine Absorptionsstelle an die sich ein Elektron mit Absorptionsenergie e_0 binden kann. Berechnen Sie die Besetzungswahrscheinlichkeit der Absorptionsstelle als Funktion der Temperatur T und der mittleren Teilchendichte n.

Hinweis: Die Absorptionsstelle und das Elektronengas befinden sich im Gleichgewicht. Daher stimmt das chemische Potential und die Temperatur in beiden Systemen überein.

Lösung:

Die Absorptionsstelle ($e_0 < 0$) hat nur einen Energiezustand, $Z_1 = e^{-\beta e_0}$, und kann nur ein Teilchen aufnehmen. Damit ergibt sich die großkanonische Zustandssumme

$$Z_{GK} = \sum_{N=0}^{1} \frac{1}{N!} z^{N} Z_{1}^{N} = 1 + z e^{-\beta e_{0}}.$$

Die Wahrscheinlichkeit ein Teilchen zu finden (Besetzungswahrscheinlichkeit) ist gegeben durch

$$w(N=1) = \frac{1}{Z_{\text{GK}}} \frac{1}{1!} (zZ_1)^1 = \frac{ze^{-\beta e_0}}{1 + ze^{-\beta e_0}} = \frac{nh^2 v_{\text{F}}^2}{nh^2 v_{\text{F}}^2 + 2\pi k_{\text{P}}^2 T^2 e^{\beta e_0}}$$

4. Vorbereitung auf die Quantenstatistik

Gegeben sei die Dichtematrix

$$\rho = \left(\begin{array}{cc} 1/2 & 1/2 - a \\ 1/2 - a & 1/2 \end{array}\right)$$

eines Dipols in der Basis $\{|\uparrow\rangle, |\downarrow\rangle\}$. Der Dipole kann im Magnetfeld B nur die beiden diskreten Werte $\{+\mu, -\mu\}$ annehmen.

a) Schreiben Sie die Matrix des Hamiltonoperators \hat{H} in der $\{|\uparrow\rangle, |\downarrow\rangle\}$ Basis an und berechnen Sie die Spur der Matrix $e^{-\beta H}$. Für welche Werte von a kommutieren H und ρ .

Lösung:

Die Matrix des Hamiltonoperators ist

$$H = \left(\begin{array}{cc} -\mu B & 0\\ 0 & \mu B \end{array}\right)$$

und

$$\operatorname{Spur}\!\left(e^{-\beta H}\right) = e^{-\beta \mu B} + e^{\beta \mu B} = 2\cosh(\beta \mu B).$$

Der Kommutator zwischen ρ und H ist

$$[\rho, H] = \begin{pmatrix} 0 & +\mu B - 2a\mu B \\ -\mu B + 2a\mu B & 0 \end{pmatrix}$$

und verschwindet nur für $a = \frac{1}{2}$.

b) Berechnen Sie den Erwartungswert der Energie $\langle E \rangle = \operatorname{Spur}(H\rho)$, sowie die Entropie $S = -k_B \operatorname{Spur}(\rho \ln \rho)$. Für welchen Wert von a wird die Entropie maximal? Zeigen Sie, dass es sich dabei um einen gemischten Zustand handelt.

Lösung:

Der Erwartungswert der Energie ist

$$\langle E \rangle = \operatorname{Spur}(H\rho) = \frac{1}{2}(-\mu B + \mu B) = 0$$

und die Entropie ist gegeben durch

$$S = -k_B \operatorname{Spur}(\rho \ln \rho) = -k_B ((1-a)\ln(1-a) + a\ln(a)).$$

Dessen Maximum liegt bei

$$\frac{\partial S}{\partial a} = -k_{\rm B} \Big(-\ln(1-a) + \ln(a) \Big) = 0 \qquad \Rightarrow \quad a = \frac{1}{2}.$$

Dabei handelt es sich um einen gemischten Zustand da

$$\operatorname{Spur}(\rho) - \operatorname{Spur}(\rho^2) = \frac{1}{2} \neq 0.$$

Zu kreuzen (online im **TUWEL**-Kurs zur LVA): 1/2/3a/3b/4