
Exact diagonalization of the atomic problem

on the example of the d electronic shell

(and using the julia-language environment)

IFP TU Wien CMS course 2016 exact diagonalization tutorial 1 / 15

tutorial structure

≈ 30min introduction to julia by hands-on training
(optional: can be skipped in case you are already experienced in it or prefer to stick to
another language environment, e.g. MatLab,Python,C/C++,. . . that is “friendly” to
arrays manipulations, e.g. matrix multiplication, eigenvalue problem, etc.)

≈ 120min core part of the ED code: writing from scratch and debugging
– Fock-space vectors and their counting
– Hamiltonian matrix
– dealing with the interaction matrix
– fermionic sign factor

& 30min physical analysis of the output (including extensions of the code)
– Tanabe-Sugano diagram
– relevant one-particle operators, observables and representations
– commutation relations

(optional) completely binary-based implementation of the code and corresponding matrix
representations of all creation and annihilation operators;
wider class of single-particle operators (those that have nonzero off-diagonal entries),
their representations and eigenvalues

IFP TU Wien CMS course 2016 exact diagonalization tutorial 2 / 15

julia language: brief info and starting
julia is a high-level, high-performance dynamic programming language for technical computing, with syntax
that is familiar to users of other technical computing environments. It provides a sophisticated compiler,
distributed parallel execution, numerical accuracy, and an extensive mathematical function library. Julia’s Base
library, largely written in Julia itself, also integrates mature, best-of-breed open source C and Fortran libraries
for linear algebra, random number generation, signal processing, and string processing.

(firstly appeared: 2012)

– free, open source and library-friendly

– good performance, approaching that of statically-compiled languages like C, Fortran

– call Python functions: use the PyCall package

– call C functions directly: no wrappers or special application programming interfaces

Homepage and much-much more information & online help: http://julialang.org/

starting julia

open terminal, simply type julia

you will enter the interactive mode:

$ julia
(logo with the currently-installed version)

julia>

exiting: “Ctrl+D” or type exit() or quit() ; running the existing script-file: julia <filename>

IFP TU Wien CMS course 2016 exact diagonalization tutorial 3 / 15

http://julialang.org/

julia language: hands-on training

Copy the folder to your local drive cp -r ../cms00/ED julia/ .

cd ED julia/ ; ls ; head -30 intro.jl ; julia

It is convenient to have two windows (split view): one with interactive julia-mode, another with the
opened intro.jl (in any preferred text editor, e.g. nano, emacs, vim, gedit,. . .)

Use the interactive mode to repeat all steps written

part A: basic operations and variable types
julia has a large variety of variable types

variable types are dynamic: can be changed accordingly during operation

by default, the highest possible (64-bit) representation is used for Int, Float, Complex, ...

additional specific values for Float: ’NaN’=not-a-number and ’Inf’=∞

part B: arrays and linear algebra
unlike many other technical computing languages, Julia does not expect programs to be written in a
vectorized style for performance. Julia’s compiler uses type inference and generates optimized code for
scalar array indexing, allowing programs to be written in a style that is convenient and readable, without
sacrificing performance, and using less memory at times.

part C: control flow, running scripts and input/output

IFP TU Wien CMS course 2016 exact diagonalization tutorial 4 / 15

II. Exact diagonalization: implementation of the main part

IFP TU Wien CMS course 2016 exact diagonalization tutorial 5 / 15

atom in a crystal field: Hamiltonian and input parameters
atomic Hamiltonian (no spin-orbit coupling) in terms of creation and annihilation
operators for electrons

H =
∑
σ

∑
kl

hklc
†
k cl +

∑
σσ′

∑
ijkl

uijklc
†
iσc

†
jσ′ckσ′clσ

where i , j , k, l are orbital indices and σ, σ′ are spin indices.
To perform ED, we need to construct a vector space and fill the corresponding
Hamiltonian matrix with values.

Input (integer) parameters of the model:

Nst – total number of single-particle states (Norbitals × Nspins)

Qel – total charge in the shell that remains conserved, [N̂, Ĥ] = 0

Other (floating-point) parameters:

for simplicity, we consider that hkl matrix is diagonal in orbital indices and all its
diagonal entries can be described by a single parameter ∆, i.e. Delta , which can
be set and varied directly in the ED script-file

values for the interaction matrix will be provided in a separate file: uijkl.dat, i.e.

after loading (on a later stage), we will have an array u[i,j,k,l]

IFP TU Wien CMS course 2016 exact diagonalization tutorial 6 / 15

vector space; using conservation of the total charge
open a new script-file for editing (e.g. ed.jl)

Let us specify from the start and consider the electronic d shell (` = 2)

set Nst=... accordingly

use some particular value for the total charge Qel=... (integer number between 2

and Nst-1; e.g. firstly consider the case of d3 as in the lecture)

Now we want to separate the vector states, which belong to the chosen Qel-manifold,
from all others.

determine now the total number of different many-body states Ncomb=... with
fixed Nst and Qel,
e.g., the ket-states like |0000000111〉, |0000001011〉, . . . , |1110000000〉 in d3

(Hint: the command binomial can be useful)

initialize arrays that you are going to work with, for example:

myvec = zeros(Ncomb,Nst) – all the necessary vectors, the second

(column) argument corresponds to the coordinate of a particular vector from
the set (can take values 0 or 1)

trvec = zeros(1,Nst) – vector for check and other temporary purposes

Hmatr = zeros(Ncomb,Ncomb) – Hamiltonian matrix to diagonalize

IFP TU Wien CMS course 2016 exact diagonalization tutorial 7 / 15

setting the vector subspace
Now, it is necessary to track vectors (all possible combinations of ’1’ and ’0’ of the
length Nst) and choose only those that correspond to our Qel-manifold
(a) tracking

use the loop for i=0:Nall-1 , where ’Nall’ is the total number of all possible
states in the (d) shell
– to determine the number ’Nall’, exponentiation ^ (2^Nst)

or left bit shift << operation (1 <<Nst) can be useful

inside the loop use a bit representation for each ’i’-number
– the bin command with two arguments can be useful: bin(i,Nst)

make an output to the screen to check that you have all the required states there

(b) selecting and setting vectors

use an auxiliary vector ’trvec’ to make a correspondence to all bits of the
’i’-number [the command parse("$(str[k])") , where ’k’ is the kth character of

the string ’str’, can be useful]

calculate the charge of each ’trvec’ (the command sum);

in case it equals to ’Qel’, set myvec[j,:]=trvec[:]; j=j+1; (the vector index

’j’ must be set to 1 before the for-loop starts)

Xcheckpoint: check visually that you have set all ’Ncomb’ vectors properly

IFP TU Wien CMS course 2016 exact diagonalization tutorial 8 / 15

Hamiltonian: free-particle term and interaction matrix
Now, you can fill the Ncomb×Ncomb Hamiltonian matrix with values
(a) free-particle term

let us consider d shell in cubic CF (common to many materials), therefore, five
(initially degenerate) orbital states split into three T2g and two Eg levels, so that all
diagonal entries of hkl can be written in terms of only one input parameter ’Delta’,
0.5*Delta*[-1 -1 -1 1 1] (for simplicity, firstly try with Delta=2.0)

there is no SO coupling, thus all off-diagonal entries are zero

the structure must be equal for the spin-up and spin-down entries (the tensor
product operation kron can be useful)

since there are only diagonal entries in the 1p-basis, this gives only contributions to
diagonal elements of the Hamiltonian matrix ’Hmatr’

Xcheckpoint:
after partially filling ’Hmatr’ with proper values (using matrix multiplication
operations), you can check the intermediate result by analysis of energies of
many-body states. Do energies for non-interacting limit match your expectations?

(b) interaction matrix (from the external file)

load the file ’uijkl.dat’ (the command ur=readdlm("uijkl.dat", ’\t’));

columns are: (1) u value; (2-5) indices i,j,k,l [’1’-’5’ (’6’-’10’) correspond to ↑ (↓)
sector there]

rewrite the loaded values in the form of a 4-dimensional array u[i,j,k,l]
IFP TU Wien CMS course 2016 exact diagonalization tutorial 9 / 15

Hamiltonian: interaction term
To fill properly the Hamiltonian matrix, we need to:

1) find the vectors that are linked by the interaction matrix ’u[i,j,k,l]’

2) account for the fermionic sign factor

One of straightforward strategies:

use the outer for-cycle over the loaded lines that determine nonzero ’u[i,j,k,l]’

use the inner (double) for-cycle over all bra- and ket-vectors in the subspace

use the conditional statement inside to exclude many of non-contributing states, e.g.
if(myvec[bra,i]==1 && myvec[bra,j]==1 && i!=j

&& myvec[ket,k]==1 && myvec[ket,l]==1 && k!=l)

directly count electrons for the sign and change the vector state step by step:
chvec=myvec[ket,:]; numf=0

numf+=sum(chvec[1:l-1]); chvec[l]=chvec[l]-1

· · ·
numf+=sum(chvec[1:i-1]); chvec[i]=chvec[i]+1

the last (most nested) if-statement to check that the resulting vector is the bra-state

if(chvec==myvec[bra,:]) ; if yes, then add the corresponding term (with a

proper sign that is easily retrieved from ’numf’) to the ’Hmatr’ matrix element

IFP TU Wien CMS course 2016 exact diagonalization tutorial 10 / 15

Diagonalization and control

En=eigvals(Hmatr)

Xcheckpoint:

In case of Qel=3 , how large is degeneracy of the ground state?
(Later, we introduce an automatic calculation of states degeneracies, but it can be
already done on this stage.)
Do you have some reasonable explanation for that?
What will happen with degeneracies of the ground and the first excited state, if you
increase/decrease the crystal field splitting magnitude in 10 times?

Answer the same questions for Qel=6 . Do you observe a difference comparing to the d3

case? Why?

Unless your program provides an unphysical output in limiting cases, to have a better
insight in physics, we can perform more analysis: introduce operators and corresponding
observables, construct Tanabe-Sugano diagrams for each case, etc.

IFP TU Wien CMS course 2016 exact diagonalization tutorial 11 / 15

III. ED: physical analysis of the output

IFP TU Wien CMS course 2016 exact diagonalization tutorial 12 / 15

Tanabe-Sugano diagram

introduce an external for-cycle over the magnitude over the crystal field splitting
and obtain the Tanabe-Sugano diagram for d3 electronic shell (the interactions
strengths determined by the file ’uijkl.dat’ are kept fixed).

note that the interaction term is usually time-consuming, thus consider setting it
only once outside the for-loop over the CF magnitude

the reasonable range for CF: ∆ ∈ [0, 4]

shift all energies to have the lowest state always at zero

save your eigenenergies as functions of CF splitting to the external file, writedlm

command (you should have an array with the 1st column = CF magnitude, 2nd till
Ncomb+1 = energies)

use some external software to construct a plot, e.g. gnuplot,
plot for [i=2:Ncomb+1] "ts.dat" using 1:i with lines title ’’

(’PyPlot’ or ’Gadfly’ julia packages for plotting are not installed on the server)

Xcheckpoint:

Do you observe some quantitative differences with the plot shown in the lecture?
(in case you have enough time, construct the TS diagram for the d6 shell)

IFP TU Wien CMS course 2016 exact diagonalization tutorial 13 / 15

Energy multiplets, operators and observables
Now, fix the CF splitting (pick up some value from the TS diagram) and analyze
low-energy states in more detail

degeneracies

introduce a small routine calculating degeneracies of five lowest multiplets
(the command diff can be useful), make an output to the screen;

the degeneracy D(j) can already provide some information on states of the
multiplet j , D(j) = (2L(j) + 1)(2S (j) + 1)

number operators

introduce a number operator n̂ in the single-particle basis (ones , eye and kron

(for other operators below) can be useful)

express it in the new (many-body) basis similarly to the CF-term

perform a unitary transformation of N̂ to the eigenbasis of the Hamiltonian

find a matrix representation of N̂ in space of all energy eigenstates of three lowest
multiplets

Xcheckpoint: Do you observe any difference in matrix entries for the first and the second
multiplet? Why?

introduce the number operators for T2g and Eg states separately and perform a
similar analysis. Do you observe some difference now?

IFP TU Wien CMS course 2016 exact diagonalization tutorial 14 / 15

Energy multiplets, operators and observables
spin operator

introduce the operator Sz in the single-particle basis

express it in the new (many-body) basis

perform a unitary transformation of Ŝz to the eigenbasis of the Hamiltonian

d3 shell: determine eigenvalues for subpaces corresponding to two lowest multiplets

d6 shell: check that Sz eigenvalues (together with number operators representations
for T2g and Eg) clearly indicate a transition from the high spin to the low spin state
at some critical value of the CF splitting (perform a corresponding analysis just for
two values ∆1,2 of CF, ∆1 < ∆crit < ∆2)

commutation relations: verify that (as it was mentioned in the lecture), indeed, the
following relations hold for the Hamiltonian H:

charge conservation, [N,H] = 0

Sz conservation, [Sz ,H] = 0

S2 conservation, [S2,H] = 0

?? What about Nt2g and Neg operators? Do they commute with the Hamiltonian? Is
there any correspondence with the observed form of matrix representations for these
operators?

IFP TU Wien CMS course 2016 exact diagonalization tutorial 15 / 15

