
Andreas Humenberger
1026602
January 13, 2015

Exercises Block 2
6.0 VU Logic and Computability

2014W

Exercise ML2 For each of the following schematic formulas, show that they are valid in
F and provide concrete counter-examples that show that removal of some accessibilities
leads to invalidity:

�(A ⊃ A)

Since A ⊃ A is a classical tautology, it holds in every world, and therefore
�(A ⊃ A) holds in every world as well. Furthermore, the removal of some
accessibilities does not yield invalidity.

♦♦A ⊃ ♦A

Let x ∈ {w, u} be an arbitrary world and A an arbitrary formula, and suppose
M, x |= ♦♦A. Then, there exists a world y ∈ {w, u} s.t. xRy and M, y |=
♦A, moreover there must be a world z ∈ {w, u} s.t. yRz and M, z |= A.
Since F is transitive, xRz must hold as well, and therefore M, x |= ♦A, and
M, x |= ♦♦A ⊃ ♦A. We can conclude F |= ♦♦A ⊃ ♦A.

The removal of wRw yields invalidity. Consider a model M based on F s.t.
vM(p, w) = 1 and vM(p, u) = 0. Then M, w |= ♦♦p holds, but M, w 6|= ♦p.
Therefore M, w 6|= ♦♦p ⊃ ♦p and F 6|= ♦♦p ⊃ ♦p.

A ⊃ �♦A

Let x ∈ {w, u} be an arbitrary world and A an arbitrary formula, and suppose
M, x |= A. Since F is symmetric we have M, y |= ♦A for each world
y ∈ {w, u} s.t. xRy. Therefore we haveM, x |= �♦A andM, x |= A ⊃ �♦A.
We can conclude F |= A ⊃ �♦A.

The removal of uRw yields invalidity. Consider a model M based on F s.t.
vM(p, w) = 1 and vM(p, u) = 0. Then M, w |= p holds, and M, u 6|= ♦p.
Therefore M, w 6|= �♦p and M, w 6|= p ⊃ �♦p. Moreover F 6|= p ⊃ �♦p.

Exercise ML3 Show that the intersection of two logics is also a logic. What about
unions of logics? (Prove or refute!)

Let L1,L2 be arbitrary logics and L = L1∩L2 the intersection of them. Furthermore,
let F, F ⊃ G ∈ L. Hence, F, F ⊃ G ∈ L1 and F, F ⊃ G ∈ L2. Since L1 and L2 are closed
under modus ponens, we have G ∈ L1, G ∈ L2, and therefore G ∈ L. In conclusion, if
F, F ⊃ G ∈ L then G ∈ L, therefore L is closed under modus ponens.

Let F ∈ L be an arbitrary formula, π an arbitrary substitution (PVL 7→ FORML)
and F [π] the formula resulting from F by applying π. Since L1 and L2 are closed under
substitution, we have F [π] ∈ L1, F [π] ∈ L2, and therefore F [π] ∈ L. Hence, we can
conclude L is closed under substitution.

1

Andreas Humenberger
1026602
January 13, 2015

Exercises Block 2
6.0 VU Logic and Computability

2014W

Let L1 = {⊥} and L2 = {⊥ ⊃ >}. Both, L1 and L2, are logics since both are closed
under substitution and modus ponens. However, the union L = L1 ∪ L2 = {⊥,⊥ ⊃ >}
is not closed under modus ponens since > 6∈ L, and therefore it is not a logic.

Exercise ML4 Specify a concrete counter-example to F ⊃ �F . Is there a frame in
which F ⊃ �F is valid? (Prove or refute!)

LetM = 〈W,R, V 〉 be a model s.t. there are worlds w, u ∈W and wRu. Now consider
an assignment vM(p, w) = 1 for some p ∈ PV and vM(p, x) = 0 for all x ∈ W different
from w. Then M, w |= p and M, w 6|= �p, and therefore M, w 6|= p ⊃ �p.

Let F = 〈W, ∅〉 be a frame. Then, trivially F |= F ⊃ �F holds, since �F holds in
every world w ∈W and every model M based on F .

Exercise I1 Show that formulas 3, 6, 7 and 9 (on slide 8) are BHK-valid.

(3) (A ∧B) ⊃ (B ∧A)

The procedure γ . {(A∧B) ⊃ (B ∧A)} transforms every proof ρ = 〈ρA, ρB〉
of (A∧B) into a proof of (B∧A), where ρA is a proof of A and ρB is a proof
of B. The procedure γ can be described as follows:

1. extract the first component ρA from ρ

2. extract the second component ρB from ρ

3. return 〈ρB, ρA〉

(6) ⊥ ⊃ A

The procedure γ . {⊥ ⊃ A} takes as input a proof of ⊥ and returns a proof
of A. Trivially, γ transforms any given proof of ⊥ into a proof of A, since
there are no proofs for ⊥.

(7) (A ⊃ (B ⊃ C)) ⊃ ((A ∧B) ⊃ C)

We define the procedure γ . {(A ⊃ (B ⊃ C)) ⊃ ((A ∧ B) ⊃ C)} as follows:
The input of γ is a procedure η . {A ⊃ (B ⊃ C)} where the

• input of η is a proof δ . {A}, and the

• output of η is a procedure π . {B ⊃ C}.
The output of γ, i.e. the procedure ν – which transforms a proof ρ = 〈ρA, ρB〉
into a proof σ of C – can be described as follows:

1. extract the first component ρA from ρ

2. apply η to ρA, i.e. compute η(ρA), we get a proof π of B ⊃ C

2

Andreas Humenberger
1026602
January 13, 2015

Exercises Block 2
6.0 VU Logic and Computability

2014W

3. extract the second component ρB from ρ

4. apply π to ρB, i.e. compute π(ρB), we get a proof σ of C

5. return σ

(9) (A ∧ (B ∨ C)) ⊃ ((A ∧B) ∨ (A ∧ C))

Consider the procedure γ . {(A ∧ (B ∨ C)) ⊃ ((A ∧ B) ∨ (A ∧ C))}. The
input of γ is a proof σ = 〈α, ρ〉 s.t. α . {A} and ρ = 〈ν, ρ0〉 . {B ∨ C}. The
procedure γ can be described as follows:

1. extract the first component – i.e. α – from σ

2. extract the second component – i.e. ρ = 〈ν, ρ0〉 – from σ

3. extract the first component – i.e. ν – from ρ

4. extract the second component – i.e. ρ0 – from ρ

5. create the pair τ = 〈α, ρ0〉
6. return the pair 〈ν, τ〉

Exercise AD1 Show the validity of the following formula in LK: sk(∀x∀y∃z∀u∃vF (x, y, z, u, v))→
∀x∀y∃z∀u∃vF (x, y, z, u, v).

sk(∀x∀y∃z∀u∃vF (x, y, z, u, v)) = ∀x∀y∀uF (x, y, f(x, y), u, g(x, y, u))

F (a, b, f(a, b), c, g(a, b, c)) ` F (a, b, f(a, b), c, g(a, b, c))
∃, r

F (a, b, f(a, b), c, g(a, b, c)) ` ∃vF (a, b, f(a, b), c, v)
∀, l

∀uF (a, b, f(a, b), u, g(a, b, u)) ` ∃vF (a, b, f(a, b), c, v)
∀, r

∀uF (a, b, f(a, b), u, g(a, b, u)) ` ∀u∃vF (a, b, f(a, b), u, v)
∃, r

∀uF (a, b, f(a, b), u, g(a, b, u)) ` ∃z∀u∃vF (a, b, z, u, v)
∀, l

∀y∀uF (a, y, f(a, y), u, g(a, y, u)) ` ∃z∀u∃vF (a, b, z, u, v)
∀, r

∀y∀uF (a, y, f(a, y), u, g(a, y, u)) ` ∀y∃z∀u∃vF (a, y, z, u, v)
∀, l

∀x∀y∀uF (x, y, f(x, y), u, g(x, y, u)) ` ∀y∃z∀u∃vF (a, y, z, u, v)
∀, r

∀x∀y∀uF (x, y, f(x, y), u, g(x, y, u)) ` ∀x∀y∃z∀u∃vF (x, y, z, u, v)
→, r

` ∀x∀y∀uF (x, y, f(x, y), u, g(x, y, u))→ ∀x∀y∃z∀u∃vF (x, y, z, u, v)

Remark: a, b and c are free variables.

3

Andreas Humenberger
1026602
January 13, 2015

Exercises Block 2
6.0 VU Logic and Computability

2014W

Why is the inverse implication not valid?

Assuming ∀x∀y∃z∀u∃vF (x, y, z, u, v) holds, then one cannot conclude that
∀x∀y∀uF (x, y, f(x, y), u, g(x, y, u)) holds for every function f and g. Con-
sider an interpretation I = (D,φ, d) as counter-example, where

D = {0, 1}
φ(f)(x, y) = 1 for all x, y ∈ D

φ(g)(x, y, z) = 1 for all x, y, z ∈ D

φ(F)(x, y, z, u, v) =

{
1 if z = v = 0

0 otherwise

Then, ∀x∀y∃z∀u∃vF (x, y, z, u, v) evaluates to 1 and ∀x∀y∀uF (x, y, f(x, y), u, g(x, y, u))
evaluates to 0. Hence, the inverse implication is not valid.

Exercise AD2 Prove that if ∀x1 · · · ∀xnF is satisfiable, then ∀x1 · · · ∀xnδ(F) is satisfi-
able.

By the lemma about the definition we get that ∀x1 · · · ∀xn(ε(F) ∧ pF (x1, . . . , xn)) is
satisfiable iff ∀x1 · · · ∀xnF is satisfiable. It suffices to show that if ε(F) is satisfiable, then
γ(F) :=

∧
G∈Σ(F)DG is satisfiable. We will perform an inductive proof on the logical

complexity of F .

Basis F is atomic. Then, ε(F) = EF and EF has the form ∀X(pF (X) ↔ F), by
applying equivalence transformations we get

∀X(pF (X)↔ F)

⇐⇒ ∀X((pF (X)→ F) ∧ (F → pF (X)))

⇐⇒ ∀X((¬pF (X) ∨ F) ∧ (¬F ∨ pF (X)))

⇐⇒ ∀X(¬pF (X) ∨ F) ∧ ∀X(¬F ∨ pF (X)).

It is obvious that the last formula is equivalent to DF . Since γ(F) = DF , if ε(F) is
satisfiable then γ(F) is satisfiable.

Induction hypothesis Assume that, for all H with lc(H) < m, if ε(H) is satisfiable,
then γ(H) is satisfiable.

Step Consider a formula G with lc(G) = m. We perform a case distinction wrt. the
top-level symbol in G.

4

Andreas Humenberger
1026602
January 13, 2015

Exercises Block 2
6.0 VU Logic and Computability

2014W

Case G is of the form ¬H. Then, EG is of the form ∀X(pG(X) ↔ ¬pH(X)), by
applying equivalence transformations we get

∀X(pG(X)↔ ¬pH(X))

⇐⇒ ∀X((pG(X)→ ¬pH(X)) ∧ (¬pH(X)→ pG(X)))

⇐⇒ ∀X((¬pG(X) ∨ ¬pH(X)) ∧ (pG(X) ∨ pH(X)))

⇐⇒ ∀X(¬pG(X) ∨ ¬pH(X)) ∧ ∀X(pG(X) ∨ pH(X)).

Thus, EG is equivalent to DG and furthermore if EG is satisfiable then DG is satisfiable.
Hence, by the induction hypothesis, the equivalence of EG and DG, and the construction
of DG, we get that if ε(G) is satisfiable, then γ(G) is satisfiable.

Case G is of the form H1 ∧ H2. Then, EG is of the form ∀X(pG(X) ↔ (pH1(Y) ∧
pH2(Z))) where X = Y ∪ Z, by applying equivalence transformations we get

∀X(pG(X)↔ (pH1(Y) ∧ pH2(Z)))

⇐⇒ ∀X((pG(X)→ (pH1(Y) ∧ pH2(Z))) ∧ ((pH1(Y) ∧ pH2(Z))→ pG(X)))

⇐⇒ ∀X((¬pG(X) ∨ (pH1(Y) ∧ pH2(Z))) ∧ (¬(pH1(Y) ∧ pH2(Z)) ∨ pG(X)))

⇐⇒ ∀X((¬pG(X) ∨ pH1(Y)) ∧ (¬pG(X) ∨ pH2(Z)) ∧ (¬pH1(Y) ∨ ¬pH2(Z) ∨ pG(X)))

⇐⇒ ∀X(¬pG(X) ∨ pH1(Y)) ∧ ∀X(¬pG(X) ∨ pH2(Z))∧
∀X(¬pH1(Y) ∨ ¬pH2(Z) ∨ pG(X)). (1)

Furthermore DG is of the form

∀X(¬pH(X)∨pH1(X))∧∀X(¬pG(X)∨pG2(X))∧∀X(pG(X)∨¬pG1(X)∨¬pG2(X)). (2)

It is obvious that (1) is equivalent to (2). Hence, by the induction hypothesis, the
equivalence of (1) and (2), and the construction of DG, we get that if ε(G) is satisfiable,
then γ(G) is satisfiable.

Case G is of the form H1 ◦H2 st. ◦ ∈ {∨,→}. These cases are analogous to the one
above.

Case G is of the form ∀vH. Then, EG is of the form ∀X(pG(X) ↔ ∀v pH(X, v)), by
applying equivalences we get

∀X(pG(X)↔ ∀v pH(X, v))

⇐⇒ ∀X((pG(X)→ ∀v pH(X, v)) ∧ (∀v pH(X, v)→ pG(X)))

⇐⇒ ∀X((¬pG(X) ∨ ∀v pH(X, v)) ∧ (¬∀v pH(X, v) ∨ pG(X)))

⇐⇒ ∀X((¬pG(X) ∨ ∀v pH(X, v)) ∧ (∃v ¬pH(X, v) ∨ pG(X)))

⇐⇒ ∀X∀v(¬pG(X) ∨ pH(X, v)) ∧ ∀X(∃v ¬pH(X, v) ∨ pG(X))

5

Andreas Humenberger
1026602
January 13, 2015

Exercises Block 2
6.0 VU Logic and Computability

2014W

Considering the skolem form of the last formula

∀X∀v(¬pG(X) ∨ pH(X, v)) ∧ ∀X(¬pH(X, f(X)) ∨ pG(X)),

we obtain a formula which is satisfiable iff EG is satisfiable. Furthermore it is easy to
see that if this skolem form is satisfiable, then so is DG.

Case G is of the form ∃vH. This case is analogous to the one above.

Exercise AD3 Compute δ(F)′ for F = ∃y(p(x, g(x, y))→ ∃z¬(p(g(x, z), y) ∨ p(y, x))).

D∨ : ∀xyz(¬p∨(x, y, z) ∨ p(g(x, z), y) ∨ p(y, x)) ∧
∀xyz(p∨(x, y, z) ∨ ¬p(g(x, z), y)) ∧
∀xyz(p∨(x, y, z) ∨ ¬p(y, x))

D¬ : ∀xyz(¬p¬(x, y, z) ∨ ¬p∨(x, y, z)) ∧
∀xyz(p¬(x, y, z) ∨ p∨(x, y, z))

D∃1 : ∀xy(¬p∃1(x, y) ∨ p¬(x, y, f(x, y))) ∧
∀xy∀z(p∃1(x, y) ∨ ¬p¬(x, y, z))

D→ : ∀xy(¬p→(x, y) ∨ ¬p(x, g(x, y)) ∨ p∃1(x, y)) ∧
∀xy(p→(x, y) ∨ p(x, g(x, y))) ∧
∀xy(p→(x, y) ∨ ¬p∃1(x, y))

D∃2 : ∀x(¬p∃2(x) ∨ p→(x, h(x))) ∧
∀x∀y(p∃2(x) ∨ ¬p→(x, y))

Considering δ(F)′ as a set of clauses we get

{¬p∨(x, y, z) ∨ p(g(x, z), y) ∨ p(y, x), p∨(x, y, z) ∨ ¬p(g(x, z), y), p∨(x, y, z) ∨ ¬p(y, x),

¬p¬(x, y, z) ∨ ¬p∨(x, y, z), p¬(x, y, z) ∨ p∨(x, y, z),

¬p∃1(x, y) ∨ p¬(x, y, f(x, y)), p∃1(x, y) ∨ ¬p¬(x, y, u),

¬p→(x, y) ∨ ¬p(x, g(x, y)) ∨ p∃1(x, y), p→(x, y) ∨ p(x, g(x, y)), p→(x, y) ∨ ¬p∃1(x, y),

¬p∃2(x) ∨ p→(x, h(x)), p∃2(x) ∨ ¬p→(x, u), p∃2(x)}.

Exercise AD4 Find all Robinson-resolvents of C = p(x, f(x)) ∨ p(a, y) and D =
¬p(x, y)∨¬p(a, f(x))∨¬p(f(x), f(y)). Specify all used renamings, mgus and (implicit)
factors.

6

Andreas Humenberger
1026602
January 13, 2015

Exercises Block 2
6.0 VU Logic and Computability

2014W

As a first step, we only consider Robinson-resolvents of trivial factors, and we consider
the variable disjoint variant C ′ = p(u, f(u)) ∨ p(a, v) with ν = {x 7→ u, y 7→ v}.

• Resolving upon first literal of C ′ and first literal of D using mgu {x 7→ u, y 7→ f(u)}
we obtain the resolvent p(a, v) ∨ ¬p(a, f(u)) ∨ ¬p(f(u), f(f(u))).

• Resolving upon first literal of C ′ and second literal of D using mgu {u 7→ a, x 7→ a}
we obtain the resolvent p(a, v) ∨ ¬p(a, y) ∨ ¬p(f(a), f(y)).

• Resolving upon first literal of C ′ and third literal of D using mgu {u 7→ f(x), y 7→
f(x)} we obtain the resolvent p(a, v) ∨ ¬p(x, f(x)) ∨ ¬p(a, f(x)).

• Resolving upon second literal of C ′ and first literal of D using mgu {x 7→ a, y 7→ v}
we obtain the resolvent p(u, f(u)) ∨ ¬p(a, f(a)) ∨ ¬p(f(a), f(v)).

• Resolving upon second literal of C ′ and second literal of D using mgu {v 7→ f(x)}
we obtain the resolvent p(u, f(u)) ∨ ¬p(x, y) ∨ ¬p(f(x), f(y)).

In the next step, we consider Robinson-resolvents of non-trivial factors.

• Let C ′ = p(a, f(a)) be a factor of C by using the mgu {x 7→ a, y 7→ f(a)}. Resolving
upon the first literal of C ′ and the first literal of D using mgu {x 7→ a, y 7→ f(a)}
yields the resolvent ¬p(a, f(a)) ∨ ¬p(f(a), f(f(a))).

• Let C ′ = p(a, f(a)) be a factor of C by using the mgu {x 7→ a, y 7→ f(a)}. Resolving
upon the first literal of C ′ and the second literal of D using mgu {x 7→ a} yields
the resolvent ¬p(a, y) ∨ ¬p(f(a), f(y)).

• Let D′ = ¬p(a, f(a)) ∨ ¬p(f(a), f(f(a))) be a factor of D by using the mgu {x 7→
a, y 7→ f(a)}. Resolving upon the first literal of C and the first literal of D′ using
mgu {x 7→ a} yields the resolvent p(a, y) ∨ ¬p(f(a), f(f(a))).

• Let D′ = ¬p(a, f(a)) ∨ ¬p(f(a), f(f(a))) be a factor of D by using the mgu {x 7→
a, y 7→ f(a)}. Resolving upon the first literal of C and the second literal of D′

using mgu {x 7→ f(a)} yields the resolvent p(a, y) ∨ ¬p(a, f(a)).

• Let D′ = ¬p(a, f(a)) ∨ ¬p(f(a), f(f(a))) be a factor of D by using the mgu {x 7→
a, y 7→ f(a)}. Resolving upon the second literal of C and the first literal of D′

using mgu {y 7→ f(a)} yields the resolvent p(x, f(x)) ∨ ¬p(f(a), f(f(a))).

• Let C ′ = p(a, f(a)) be a factor of C by using the mgu {x 7→ a, y 7→ f(a)} and
D′ = ¬p(a, f(a)) ∨ ¬p(f(a), f(f(a))) be a factor of D by using the mgu {x 7→
a, y 7→ f(a)}. We can immediately resolve upon the first literal of C ′ and the first
literal of D′ and we obtaion the resolvent ¬p(f(a), f(f(a))).

7

Andreas Humenberger
1026602
January 13, 2015

Exercises Block 2
6.0 VU Logic and Computability

2014W

Exercise AD5 Describe another resolution refinement (other than ordered resolution)
in detail. (You do not have to give a completeness proof).

In the following, we will consider hyperresolution as a resolution refinement. The
desription is based on the paper about Resolution Theorem Proving1, especially the
definition and the example are taken from this work.

Hyperresolution is the deduction principle where only positive clauses and the empty
clause are derivable. A clause is called positive if it is of the form ` A1, . . . , An, where
A1, . . . , An are atoms. The derivation of just positive clauses is only possible if we use
many-step instead of one-step inferences.

Definition 1. Let C be a nonpositive clause and D1, . . . , Dn be positive clauses; then
S : (C;D1, . . . , Dn) is called a clash sequence. Let C0 = 0 and Ci + 1 ∈ Res({Ci, Di+1})
for i = 1, . . . , n− 1. If Cn is defined and positive then it is called a hyperresolvent of S.

Remark. Res(C) denotes the set of resolvents definable from a set of clauses C.

Example 1. Let C = {C1, C2, C3, C4} be a set of clauses where

C1 = ` p(a, b)
C2 = ` p(b, a)

C3 = p(x, y), p(y, z) ` p(x, z)
C4 = p(a, a) ` .

We can construct a refutation of C:

` p(a, b)

` p(b, a) p(x, y), p(y, z) ` p(x, z)

p(x, b) ` p(x, a)

` p(a, a) p(a, a) `
`

Note that ` p(a, a) is a hyperresolvent of the clash sequence (C3;C1, C2).

1Alexander Leitsch, http://www.logic.at/staff/leitsch/httpd/resolv.pdf

8

http://www.logic.at/staff/leitsch/httpd/resolv.pdf

