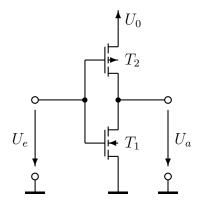

BEISPIEL 5.1: Sourcefolger

Versorgungsspannung: $U_0=5~{
m V}$ Kollektor-Ruhestrom: $I_{{
m C}0}=1~{
m mA}$ Eingangs-Ruhespannung: $U_{{
m e}0}=4~{
m V}$ Drain-Ruhestrom: $I_{{
m D}0}=1~{
m mA}$ Generator-Innenwiderstand: $R_{{
m G}}=1~{
m k}\Omega$

Bipolartransistor: MOSFETs:


Flussspannung: $U_{\rm f} = 0.6 \ {\rm V}$ Schwellenspannung T: $U_{\rm th} = 1 \text{ V}$ Temperaturspannung: $U_{\mathrm{T}}=25~\mathrm{mV}$ Steuerfaktor T: $\beta = 2.5 \text{ mA/V}^2$ B = 100Stromverstärkung: Schwellenspannung T_2 : $U_{\rm th2} = -1 \text{ V}$ $U_{\rm Y}=50~{\rm V}$ Early-Spannung: $U_{\rm Y} = 50 \, {\rm V}$ Early-Spannung: Restspannung: $U_{\text{CEsat}} = 0.1 \text{ V}$

Lösen Sie für jede der 3 Schaltungen folgende Aufgaben und vergleichen Sie die Ergebnisse:

- (a) Berechnen Sie die Ausgangs-Ruhespannung $U_{\rm a0}$ und dimensionieren Sie den Widerstand R bzw. den Steuerfaktor β_2 von MOSFET T_2 , sodass sich der Arbeitpunkt einstellt.
- (b) Berechnen Sie unter Berücksichtigung der Early-Leitwerte die Spannungsverstärkung $v_{\mathrm{u}}.$
- (c) Berechnen Sie unter Berücksichtigung der Early-Leitwerte den Eingangswiderstand $r_{
 m e}$.
- (d) Berechnen Sie unter Berücksichtigung der Early-Leitwerte den Ausgangswiderstand $r_{\rm a}$.

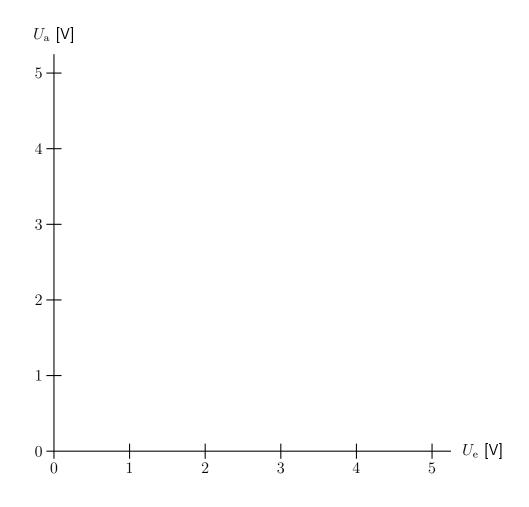
	Schaltung 1	Schaltung 2	Schaltung 3
R bzw. eta_2			
$1/g_{ m m}$			
$1/g_{ m CE}$ bzw. $1/g_{ m DS}$			
$U_{\mathrm{a}0}$			
$v_{ m u}$			
$r_{ m e}$			
$r_{ m a}$			

BEISPIEL 5.2: CMOS-Inverter

Versorgungsspannung: $U_0 = 5 \text{ V}$

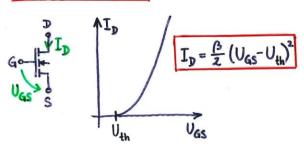
 $\begin{array}{ll} \mbox{Schwellenspannungen:} & U_{\rm th1}=\overline{U}_{\rm th2}=1 \mbox{ V} \\ \mbox{Steuerfaktoren:} & \beta_1=\beta_2=0{,}25 \mbox{ mA/V}^2 \end{array}$

Der CMOS-Inverter ist das einfachste logische Glied in CMOS-Technologie.


Ermitteln Sie die Übertragungskennlinie $U_{
m a}(U_{
m e})$

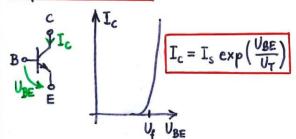
(a) in jenen Bereichen, in denen jeweils einer der Transistoren sperrt.

(b) in jenem Bereich, in dem beide Transistoren im Stromquellenbereich arbeiten.


(c) in jenen Bereichen, in denen jeweils ein Transistor im Stromquellenbereich und der andere im Ohmschen Bereich arbeitet.

Hinweis: Die einzelnen Bereiche der Kennlinie gehen stetig mit stetigen Tangenten ineinander über.

STEUERKENNLINIE IM STROMQUELLENBEREICH


nMOS - Transistor

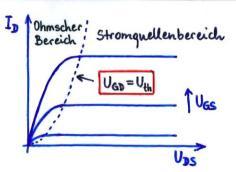
Schwellspannung Uth. technolog. einstellbar Arbeitspunkt auf quadrat. Kennlinie

Gatestrom: 20

Bipolartransistor

Flußspannung Uf durch Physik vorgegeben (~0.6V) Meist kann mit festem Uf gerechnet werden

Steilheit:
$$g_m = \frac{I_c}{V_T}$$
 (größer)


Basistrom: IB = Ic/B (B&100)

Kleinsignalverhalten: FET kann wie Bipolartransistor mit B->00 und anderem Wert von gm behandelt werden

ARBEITSBEREICHE

Voranssetzung: UDS ≥ 0 sonst D ↔ S

	UGS > Uth	UGS < Uth
UGD > Uth	Ohmscher Bereich Stromquellenbereich	
UGD < Uth	Stromquellenbereich	sperrt

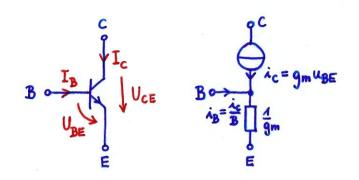

Ohmscher B.: $I_D = \beta \cdot \left[(U_{GS} - U_{th}) \cdot U_{DS} - \frac{A}{\lambda} U_{DS}^2 \right]$

Strongu.-B.: $I_D = \frac{3}{2} (U_{GS} - U_{th})^2$

Ausgangsleitwert im Strq.B: $g_{DS} = \frac{I_{DO}}{U_{y}}$

Voraussetzung: VcE≥O sonst C⇔E

	N ^{BE} ≈ N ^t	
UCE & UCESAL	Übersteuerungsbereich	Sperrt
UCE > UCESAL	Stronguellenbereich	sperrt



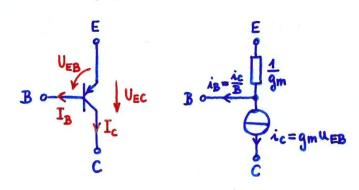
Übersteuerungsbereich: UBE = Uf, UCE = UCESAt

Stronguellenbereich: UBE = Uf, IB = Ic/B

Ausgangsleitwest im Strg. B: $g_{CE} = \frac{I_{CO}}{V_y}$

npn - TRANSISTOR

Stromquellenbereich: UCE > UCESat (=0,2V)


$$I_{c} = I_{s} exp\left(\frac{U_{BE}}{U_{T}}\right)$$

$$U_{BE} \approx U_{f} (\approx 0.6V)$$

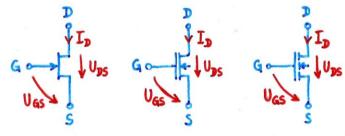
$$I_{B} = \frac{I_{c}}{B}$$

$$g_{m} \approx \frac{I_{c}}{U_{T}}$$

pnp - TRANSISTOR

Stromquellenbereich: UEC > UECSOL (=0,2V)

$$I_{c} = I_{s} \cdot exp\left(\frac{U_{EB}}{U_{T}}\right)$$


$$U_{EB} \approx U_{f} \quad (\approx 0,6V)$$

$$I_{g} = \frac{I_{c}}{B}$$

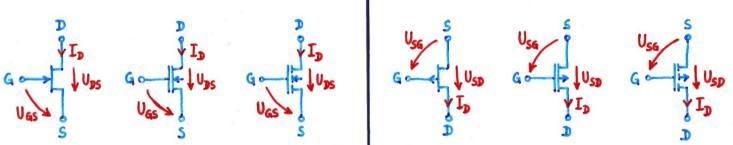
$$g_{m} = \frac{I_{c}}{U_{T}}$$

REGEL: npn -> pnp: Alle Bezugsrichtungen für Ströme und Spannungen umdrehen ⇒ Beziehungen bleiben gleich

n-Kanal FET

selbstleit. nMOS selbstsp. nMOS n-Kanal JFET

Sperrbereich: UGS < Uth


Ohmscher Bereich: Ugs > Uth, UGD > Uth

 $I_{D} = \beta \left[\left(U_{GS} - U_{th} \right) U_{DS} - \frac{A}{2} U_{DS}^{2} \right]$

Stronguellenbereich: UGS > Uth, UGD < Uth

 $I_D = \frac{B}{2} \left(U_{GS} - U_{th} \right)^2 \qquad q_m = \sqrt{2BI_D}$

p-Kanal FET

p-Kanal JFET selbstleit. pMOS

Sperrbereich: Usa < Uth

Ohmscher Bereich: Usa > Uth , UDG > Uth

 $I_D = \beta \left[\left(U_{SG} - \overline{U}_{th} \right) U_{SD} - \frac{4}{2} U_{SD}^2 \right]$

Stronguellenbereich: Usc > Uth, Upg < Uth

 $I_{D} = \frac{\beta}{2} \left(U_{SG} - \overline{U}_{th} \right)^{2}$ $g_{m} = \sqrt{2\beta} I_{D}$

ACHTUNG: alla gebrauchliche Definition der Schwellspannung: Uth = - Uth