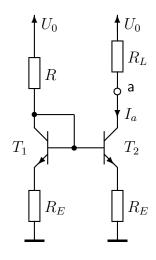

BEISPIEL 4.1: Eine Grundschaltung mit pnp-Transistor

 $\begin{array}{lll} \mbox{Versorgungsspannung:} & U_0 = 5 \mbox{ V} \\ \mbox{Generator-Innenwiderstand:} & R_{\rm G} = 0 \mbox{ }\Omega \\ \mbox{Flussspannung:} & U_{\rm f} = 0.6 \mbox{ V} \\ \mbox{Temperaturspannung:} & U_{\rm T} = 25 \mbox{ mV} \end{array}$

Stromverstärkung: $O_T = 23$


Ausgangs-Ruhespannung: $U_{a0} = 2.5 \text{ V}$

Widerstandswert: $R = 1 \text{ k}\Omega$

Handelt es sich um eine Emitterschaltung oder einen Emitterfolger?

- (a) Berechnen Sie die Eingangs-Ruhespannung $U_{\rm e0}$.
- (b) Bestimmen Sie die Kleinsignal-Spannungsverstärkung $v_{\rm u}=u_{\rm a}/u_{\rm e}$.
- (c) Berechnen Sie den Eingangswiderstand $r_{\rm e}$.
- (d) Berechnen Sie den Ausgangswiderstand $r_{\rm a}$.

BEISPIEL 4.2: Stromspiegel

Versorgungsspannung: $U_0 = 5 \text{ V}$

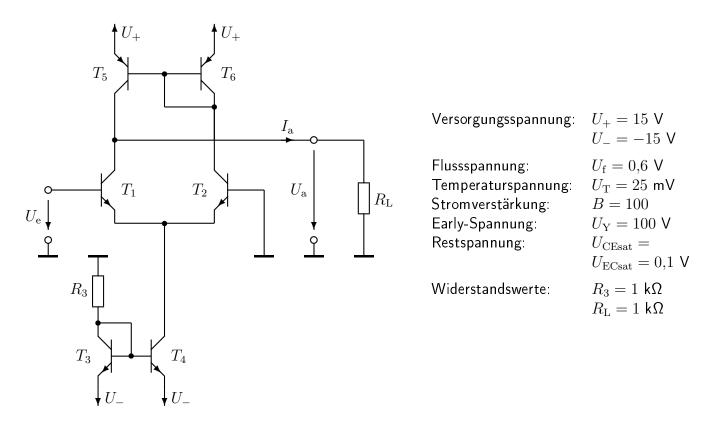
Flussspannung: $U_{
m f}=0.6~
m V$

 $\begin{array}{l} \frac{\mathrm{d}U_\mathrm{f}}{\mathrm{d}T} = -1.8 \; \mathrm{mV/K} \\ U_\mathrm{T} = 25 \; \mathrm{mV} \end{array}$

Temperaturspannung: $U_{\rm T}=25~{\rm mV}$

 $\begin{array}{ll} {\rm Stromverst\"{a}rkung:} & B=100 \\ {\rm Early\text{-}Spannung:} & U_{\rm Y}=100 \ {\rm V} \end{array}$

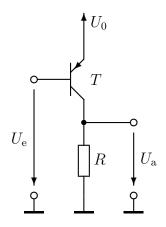
Widerstandswerte: $R = 1 \text{ k}\Omega$


 $R_{\rm L} = 500 \ \Omega$

 $R_{\rm E} = 120 \ \Omega$

Der Stromspiegel stellt eine Alternative zu der bisher verwendeten Stromquelle aus einem Transistor dar.

- (a) Berechnen Sie unter Vernachlässigung des Early-Leitwerts den Stromquellenstrom I_{a} .
- (b) Berechnen Sie den Temperaturkoeffizienten $TK_{I_{\rm a}}=rac{1}{I_{\rm a}}rac{{
 m d}I_{\rm a}}{{
 m d}T}$ des Stromquellenstroms.
- (c) Wie groß ist der Ausgangswiderstand $r_{\rm a}$ der Stromquelle?
- (d) Zeichnen Sie die analoge Schaltung des Stromspiegels mit pnp-Transistoren.

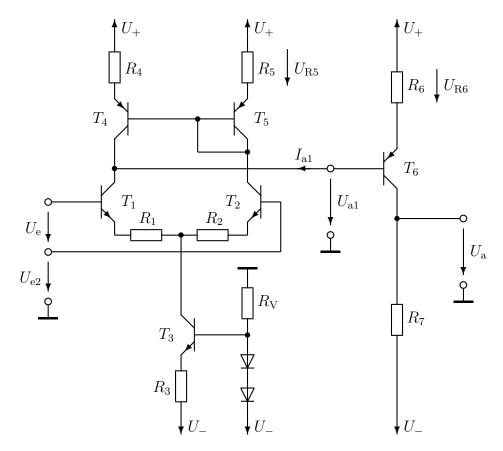

BEISPIEL 4.3: Differenzverstärker mit Stromspiegel als Last

Mit Hilfe eines Stromspiegels als Last lässt sich ein Transkonduktanzverstärker realisieren, d.h. eine spannungsgesteuerte Stromquelle $I_{\rm a}(U_{\rm e})$. In dieser Schaltung wird der Ausgangsstrom über den Lastwiderstand wieder in eine Spannung umgewandelt.

- (a) Berechnen Sie die Übertragungssteilheit $g_{\rm md}=i_{\rm a}/u_{\rm e}$ des Differenzverstärkers unter Vernachlässigung der Early-Leitwerte der Transistoren.
- (b) Berechnen Sie die Kleinsignal-Spannungsverstärkung $v_{\rm u}=u_{\rm a}/u_{\rm e}.$
- (c) Wie groß darf die Amplitude \hat{u}_a eines sinusförmigen Ausgangssignals $u_a(t) = \hat{u}_a \cdot \sin \omega t$ maximal sein, dass alle Transistoren im aktiven Bereich arbeiten?

BEISPIEL 4.4: Eine Grundschaltung mit pnp-Transistor

 $\begin{array}{lll} \mbox{Versorgungsspannung:} & U_0 = 5 \mbox{ V} \\ \mbox{Generator-Innenwiderstand:} & R_{\rm G} = 0 \mbox{ }\Omega \\ \mbox{Flussspannung:} & U_{\rm f} = 0.6 \mbox{ V} \\ \mbox{Temperaturspannung:} & U_{\rm T} = 25 \mbox{ mV} \\ \mbox{Stromverstärkung:} & B = 100 \\ \mbox{Restspannung:} & U_{\rm ECsat} = 0,1 \mbox{ V} \end{array}$


Ausgangs-Ruhespannung: $U_{
m a0}=2.5~{
m V}$

Widerstandswert: $R=1~\text{k}\Omega$

Handelt es sich um eine Emitterschaltung oder einen Emitterfolger?

- (a) Berechnen Sie die Eingangs-Ruhespannung $U_{\rm e0}$.
- (b) Bestimmen Sie die Kleinsignal-Spannungsverstärkung $v_{\mathrm{u}}=u_{\mathrm{a}}/u_{\mathrm{e}}.$
- (c) Berechnen Sie den Eingangswiderstand $r_{\rm e}$.
- (d) Berechnen Sie den Ausgangswiderstand $r_{\rm a}$.
- (e) Zeichnen Sie die Ausgangsspannung $U_{\rm a}(t)$ für ein sinusförmiges Eingangssignal $u_{\rm e}(t)=\hat{u}_{\rm e}\cdot\sin\omega t$ mit $\hat{u}_{\rm e}=30$ mV

BEISPIEL 4.5: Differenzverstärker mit 2. Verstärkerstufe

 $U_{\rm R5,0} = 0.5 \text{ V}$ Versorgungsspannung: $U_{+} = 12 \text{ V}$ Ruhespannung an R_5 : $U_{-} = -12 \text{ V}$ Ruhespannung an R_6 : $U_{R6,0} = 1 \text{ V}$ Ausgangs-Ruhespannung: $U_{\rm a0} = 0 \ {\rm V}$ $U_{\rm f} = 0.6 \ {\rm V}$ Flussspannung: Kollektor-Ruhestrom: $I_{\rm C6,0} = 10 \ {\rm mA}$ $U_{\mathrm{T}}=25~\mathrm{mV}$ Temperaturspannung: B = 100 $R_{\rm V}=10~{\rm k}\Omega$ Stromverstärkung: Widerstandswerte: $R_3 = 300 \Omega$ Restspannung: $U_{\text{CEsat}} =$ $R_1 = R_2 = 100 \Omega$ $U_{\rm ECsat} = 0.1 \text{ V}$

Die Verstärkung des Differenzverstärkers lässt sich durch eine zweite, als Emitterschaltung wirkende Stufe erhöhen.

- (a) Dimensionieren Sie die Widerstände $R_4=R_5$, R_6 und R_7 so, dass sich die angegebenen Ruheströme und -spannungen einstellen.
- (b) Berechnen Sie die Übertragungssteilheit $g_{\rm md}=i_{\rm a1}/u_{\rm e}$ des Differenzverstärkers ohne 2. Stufe. Hinweis: Obwohl die Eingangs-Ruhespannung nicht exakt null ist (siehe (c)), kann hier mit $I_{\rm C1}\approx I_{\rm C2}$ gerechnet werden.
- (c) Berechnen Sie die Offsetspannung $U_{\rm offset}$, d.i. jene Eingangsspannung, die man anlegen muss, damit die Ausgangsspannung bei der Dimensionierung nach (a) $U_{a0}=0$ ist. Hinweis: Schreiben Sie mit Hilfe des Ergebnisses aus (b) einen linearen Zusammenhang zwischen I_{a1} und U_{e} an und setzen Sie I_{a1} gleich dem von Transistor T_{6} benötigten Basisstrom.
- (d) Berechnen Sie die Kleinsignal-Spannungsverstärkung $v_{\rm u}=u_{\rm a}/u_{\rm e}.$
- (e) Bestimmen Sie für $U_{\rm e}=U_{\rm offset}$, $U_{\rm a}=0$ die minimale und die maximale Gleichtakt-Eingangsspannung, $(U_{\rm e2})_{\rm min}$ und $(U_{\rm e2})_{\rm max}$, sodass alle Transistoren im aktiven Bereich arbeiten.