
389.166 SP1 - Exercise 8 - Matrix Computation 29. January 2015

Guidelines

• Write your name and matriculation number on each sheet of paper.

• Only clearly readable exercise-elaborations are evaluated.

• Results have to be provided together with an evident way of calculation.

• Keep textual answers short and concise. Lengthy or vague statements won’t
gain points.

Exercise 8.1 (0.5 points)
In this exercise we analyze the N ×N matrix:

ĪN =


0 1 · · · · · · 1
1 0 1 . . . 1
...

. . . . . . . . .
...

1
. . . . . . 0 1

1 · · · · · · 1 0


1. Calculate the eigenvalues of

• ĪN
• IN ⊗ ĪN
• ĪN ⊗ IN
• MN = IN ⊗ ĪN + ĪN ⊗ IN

2. Calculate the eigenvalues of the terms

• wIN2 + 1−w
2
MN

• IN2−wMN

1+2w

in dependence of w. Assume N > 1 and calculate that w which gives you a
contraction mapping (i.e., the absolute value of all eigenvalues is less than
1).

Terms: Kronecker product, eigenvalues, eigenvectors.
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Exercise 8.2 (0.5 points)
In this example, we will investigate the differences between a Discrete Fourier
Transform (DFT) and the Fast Fourier Transform (FFT) algorithm, based on
the Kronecker product.

1. Consider a DFT of length N = 6. Explicitly state the input/output relation
for the DFT

y = F6x

and for the FFT algortihm as

ỹ = Fxx̃, Fx = F3 ⊗ F2

with the elements of ỹ, x̃ in the appropriate order.

2. Sketch a signal flow diagram of the FFT algorithm.

3. Compare the complexity of the standard DFT to the FFT algorithm. (How
many mult-add operations are necessary?)

4. Now consider a DFT/FFT of length 72. Again, compare the complexity.

Terms: Discrete Fourier Transform, Fast Fourier Transform, Kronecker product.
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Exercise 8.3 (0.5 points)
Let us first consider the rank decomposition of a matrix. The rank of an I × J
matrix X is the smallest number of rank one matrices (vector outer products of
the form a ◦ b = abT ) needed to synthesize X as

X =
R∑

r=1

ar ◦ br = ABT . (1)

1. What are A and B with respect to ar and br, respectively?
How do you express matrix element (X)i,j in terms of the elements in a, b?

Consider now the matrices

H1 =

 2 4
0 0
1 2

 , H2 =

 2 4
3 1
1 2

 . (2)

2. Show that H1 has rank 1. Given b1 = [1, 2]T , compute a1 that satisfies
Equation (1) with X = H1.

3. Show that H2 has rank 2. Assume that the rank decomposition of H2

has the same a1 and b1 as H1. Furthermore, assume that ‖a2‖2 = 1 and
compute the b2 that satisfies Equation (1) with X = H2.

Similarly to matrices, the rank of an I× J×K three-way array (tensor) X is the
smallest number of outer products needed to synthesize X as

X =
R∑

r=1

ar ◦ br ◦ cr. (3)

4. How do you express array element (X)i,j,k in terms of the elements in a, b
and c?

Such multiway arrays occur frequently in the age of big data. In many appli-
cations, it is not possible to store these huge data structures due to memory
limitations. Thus, compression is applied that tries to retain the latent features
of the data. Figure 8.1 depicts an example where an I× J×K tensor X is com-
pressed into a much smaller Ĩ × J̃ × K̃ tensor X̃ by applying the compression
matrices U, V and W .
Assume now a noisy tensor

Y = X + Z, (4)

where Z denotes additive white noise. Let us first investigate under which con-
ditions the noise remains white after compression. The vectorized form of Equa-
tion (4) is obtained as y = x+z, where y = vec(Y ), x = vec(X), and z = vec(Z).
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Figure 8.1: Compression of tensor X by matrices U , V , and W .

After multiway compression similar to Figure 8.1, we obtain the reduced-size
tensor Ỹ whose vectorized representation reads

ỹ = vec(Ỹ ) = (UT ⊗ V T ⊗W T )y = (UT ⊗ V T ⊗W T )x︸ ︷︷ ︸
x̃

+ (UT ⊗ V T ⊗W T )z︸ ︷︷ ︸
z̃

.

5. Assume white noise with expectation E{zzT} = σ2IIJK (IIJK is the identity
matrix of dimension I · J ·K). Note that U , V and W are deterministic.

Show that the expectation of the compressed noise computes as

E{z̃z̃T} = σ2
(
(UTU)⊗ (V TV )⊗ (W TW )

)
.

Hint: use mixed product rule (A⊗B)(C ⊗D) = (AC ⊗BD).

6. For which U , V and W is the compressed noise white, i.e., E{z̃z̃T} = ĨIJ̃K̃?

Let us now consider a rank-one tensor X = a ◦ b ◦ c written in vectorized form as
x = a⊗ b⊗ c.

7. Show that ‖x̃‖22 = ‖UTa‖22 · ‖V T b‖22 · ‖W T c‖22.
Hint: explicitly compute x̃ first by utilizing the mixed product rule.

Terms: rank decomposition, tensor, Kronecker product, mixed product rule.
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MATLAB-Exercise 8.1 (1 point)
As an extension to analytical example 8.3, we now take a closer look at a three-way
array (tensor) of rank one, i.e.,

X = a ◦ b ◦ c,

where vectors a, b and c have dimension I, J and K, respectively. Tensor X is
thus an array of dimension I× J×K.

1. Generate X with the given vectors a, b and c (load vectors.mat from the
course homepage, the vectors should appear in the workspace). How many
nonzero elements does X contain?

Hint: utilize the expression from Exercise 8.3.4.

2. Verify that the vectorized version of tensor X, i.e., vec(X), is equal to the
vectorized version obtained by the Kronecker product x = a⊗ b⊗ c.
Hint: to generate x, use function kron and carefully consider the order of
the Kronecker products in Matlab.

3. Assume that vector b and tensor X are given and that you know that all
nonzero entries in c have value 1. Compute vectors a and c.

Hint: work on matrices (slabs of tensor X) and utilize the method from
Exercise 8.3.2.

We will now consider the compression of three-way array (tensor) X with matrices
U , V andW as illustrated by Figure 8.1 in Exercise 8.3. The compression matrices
U ∈ {−1,1}I×Ĩ, V ∈ {−1,1}J×J̃ and W ∈ {−1,1}K×K̃ can be found on the course
homepage (load compmat.mat).

4. Perform compression on three-way array X. Apply the compression matri-
ces on slabs (matrices) of X, see Figure 8.1. Be careful to iterate over the
correct dimension (slabs). Note that after the compression of each dimen-
sion (I, J and K), the resulting array is changed in size. Ultimately, the

compressed three-way array X̃ has dimension Ĩ× J̃× K̃.

Hint: to copy the elements of a matrix B into a slab of a three-way array A,
e.g. A(i,:,:) = B, be careful about the dimensions in A. In this example,
the first dimension of A is a singleton dimension, and B has to be augmented
to fit the dimensions. Helpful functions to do so: reshape, shiftdim.
Similarly, to assign a three-way array slab to a matrix, e.g. B = A(:,j,:),
you have to remove the singleton dimension using e.g. squeeze.

5. Perform compression on the vectorized representation of X according to

x̃ = (UT ⊗ V T ⊗W T )x = (UT ⊗ V T ⊗W T )(a⊗ b⊗ c) = ã⊗ b̃⊗ c̃
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and verify that vec(X̃) = x̃.

Hint: first, figure out ã, b̃ and c̃ using the mixed product rule and then
generate x̃ in Matlab. Again, be careful about the element ordering using
kron.

Remember the compressed sensing example from Exercise 7. If our rank-one
tensor X features latent sparsity, i.e., the vectors a, b and c are sparse and
contain only few nonzero elements, the compression of each dimension can be
interpreted as a compressed sensing measurement, e.g., ã = UTa, where a is
compressed by matrix UT to obtain compressed representation ã. It is important
to recognize that the compressed three-way array X̃ is also a rank one tensor that
can be synthesized by the three vectors ã, b̃ and c̃. This makes reconstruction
of X feasible, since we can reconstruct a, b and c that synthesize X from the
compressed versions ã, b̃ and c̃ that synthesize X̃.
If the synthesis is not known and we want to reconstruct (vectorized tensor) x
from

x̃ = (UT ⊗ V T ⊗W T )︸ ︷︷ ︸
S

x,

we run into trouble as the dimension of sensing matrix S is huge (try to generate
S with the given matrices, Matlab will prompt out of memory).
It is thus important to exploit tensor features such as low-rank and sparsity.

Terms: three-way array, tensor, Kronecker product, compression, sparsity
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