Institute for Analysis and Scientific Computing

Lothar Nannen

Eigenwertprobleme - Übung 4

Termin: 19.5.2022 12. Mai 2022

Aufgabe 19: Verwenden Sie ähnliche Techniken wie im Beweis 4.6 um zu zeigen, dass gilt

$$\tan \theta(u_i, \mathcal{K}_m(C, v_0)) \le \frac{\kappa_i}{T_{m-i}(\gamma_i)} \tan \theta(u_i, v_0)$$

mit γ_i wie im Satz 4.6 und

$$\kappa_1 = 1, \quad \kappa_i = \prod_{j=1}^{i-1} \frac{\lambda_j - \lambda_N}{\lambda_j - \lambda_i}.$$

Hinweis: Entwickeln Sie $y_i := (I - P_i)v_0/\|(I - P_i)v_0\|$ in die Orthonormalbasis aus Eigenvektoren. P_i ist dabei der spektrale Projektor auf den Eigenraum zum i-ten Eigenvektor. Nutzen Sie weiter die Darstellung eines beliebigen $v \in \mathcal{K}_m$ aus Lemma 4.3, um den Abstand zwischen u_i und \mathcal{K}_m auf den Abstand zwischen u_i und v_0 zurückzuführen.

Aufgabe 20: Beweisen Sie den zweiten Teil der Aussage von Lemma 5.1

Aufgabe 21: Sei $A:V\to V$ ein beschränkter, linearer Operator. Weiter sei λ_0 ein isolierter Eigenwert von A und $\Gamma\in\rho(A)$ eine geschlossene, positiv orientierte Kurve um λ_0 , deren Inneres mit Ausnahme von λ_0 ebenfalls in der Resolventenmenge von A liegt. Der spektrale Projektor P_{λ_0} sei wie in der Vorlesung definiert.

Beweisen Sie, dass für beliebiges $r \in \mathbb{N}$ der Raum $\ker(A - \lambda_0 \operatorname{id})^r$ im Bild $P_{\lambda_0}(V)$ des Projektors liegt.

Hinweis: Folgen Sie der Argumentation im Beweis von Lemma 5.1 und nutzen Sie $\ker(A - \lambda_0 \operatorname{id})^r \subset \ker(A - \lambda_0 \operatorname{id})^{r+1}$.

Aufgabe 22: Zeigen Sie folgendes Hilfsresultat: Unter den Voraussetzungen des vorigen Satzes sei $\mu \neq \lambda_0$ und $n \in \mathbb{Z}$. Wir betrachten folgendes Intragal

$$I := \frac{1}{2\pi i} \int_{\Gamma} (\lambda - \lambda_0)^{-n-1} (\mu - \lambda)^{-1} d\lambda$$

und unterscheiden, ob μ ausserhalb oder innerhalb des von Γ eingeschlossenen Bereichs liegt.

- a) I = 0 für n < 0 und μ ausserhalb.
- **b)** $I = (\mu \lambda_0)^{-n-1}$ für $n \ge 0$ und μ ausserhalb.
- c) I = 0 für $n \ge 0$ und μ innerhalb
- d) $I = -(\mu \lambda_0)^{-n-1}$ für n < 0 und μ innerhalb.

Hinweis: Integral formel von Cauchy.

Aufgabe 23: Wir entwickeln die Resolvente $R(\mu)$ in der Umgebung von λ_0 in die Laurent-Reihe

$$R(\mu) = \sum_{n=-\infty}^{\infty} (\mu - \lambda_0)^n R_n, \qquad R_n := \frac{1}{2\pi i} \int_{\Gamma} (\lambda - \lambda_0)^{-n-1} R(\lambda) d\lambda. \tag{1}$$

Es gilt $P_{\lambda_0} = R_{-1}$.

a) Sei m > 0. Berechnen Sie $R_{-2}R_{-m}$, indem Sie eine weitere, geeignete Kontur $\tilde{\Gamma}$ ausserhalb von Γ für die Berechnung von R_{-2} verwenden. Leiten Sie daraus die Beziehung $R_{-m} = -D^{m-1}$ mit

$$D := -R_{-2} = -(A - \lambda_0 \text{ id}) P_{\lambda_0}$$

her.

b) Sei $m \geq 0$. Berechnen Sie analog $R_0 R_m$ und leiten Sie $R_m = S^{m+1}$ mit $S := R_0$ her. Beweisen Sie

$$P_{\lambda_0}S = SP_{\lambda_0} = 0.$$

Aufgabe 24: Sei r die Riesz-Zahl des Eigenwertes λ_0 . Verwenden Sie die vorigen Aussagen um folgende Darstellung der Resolvente zu erhalten:

$$R(\mu) = \frac{1}{\mu - \lambda_0} P_{\lambda_0} - \sum_{n=1}^{r-1} \frac{1}{(\mu - \lambda_0)^{n+1}} D^n + \sum_{n=0}^{\infty} (\mu - \lambda_0)^n S^{n+1}.$$
 (2)

Damit ist die Resolvente in einer Umgebung von λ_0 eine meromorphe Funktion mit einem Pol der Ordnung r bei λ_0 .