3. UE Mathematik 3, 2.4.2014

1. Auf C[0,1] sei das folgende innere Produkt gegeben

$$\langle f, g \rangle = f(0)g(0) + \int_{-1}^{1} f(x)g(x)|x|dx.$$

- (a) Zeigen Sie, dass $\{1, x^3\}$ eine Orthogonalbasis von $U := span\{1, x^3\}$ ist. Bestimmen Sie außerdem eine Orthonormalbasis von U.
- (b) Finden Sie eine nicht triviale Funktion der Form

$$g(x) = a + bx + cx^2, \quad a, b, c \in \mathbb{R}$$

welche orthogonal auf U steht.

(c) Finden Sie Zahlen $\mu, \lambda \in \mathbb{R}$, sodass folgender Ausdruck minimal wird

$$\int_{-1}^{1} (\lambda + \mu x^3 - x^2)^2 |x| dx.$$

2. Setzen Sie die Funktion $f(x) = x^2$ vom Intervall $[0, \pi]$ ungerade auf das Intervall $[-\pi, \pi]$ fort Entwickeln Sie die so erhaltende Funktion dort in eine Fourier-Reihe und bestimmen Sie deren Grenzverhalten mittels des Satzes von Dirichlet!

Achtung: Die fortgesetzte Funktion stimmt nicht auf ganz \mathbb{R} mit x^2 überein!

- 3. Entwickeln Sie die Funktion $f(x) = |\cos(x)|$ in eine Fourier-Reihe
 - (a) auf dem Intervall $[0, \pi]$
 - (b) auf dem Intervall $[-\pi, \pi]$.
 - (c) auf dem Intervall $[1, 1 + \pi]$.
 - (d) Formulieren Sie die Parseval'sche Gleichung für die in (a), (b) und (c) erhaltenen Reihen!

Hinweis: Bei Kenntnis der Fourier-Reihe aus (a) ergeben sich die Fourier-Reihen in (b) und (c) ganz automatisch!

4. Auf dem Intervall [0,4) sei die folgende Funktion gegeben

$$f(x) = \left\{ \begin{array}{ll} x & \text{für } 0 \le x \le 2 \\ x+1 & \text{für } 2 \le x \le 4 \end{array} \right..$$

- (a) Skizzieren Sie die Funktion f. Bestimmen Sie außerdem die gerade und die ungerade Fortsetzung f_g und f_u von f auf (-6,6). Setzen Sie f,f_g und f_u periodisch auf ganz \mathbb{R} fort.
- (b) Entwickeln Sie f, f_g und f_u in Fourierreihen.
- (c) Bestimmen Sie das Grenzwertverhalten der Fourierreihen von f, f_g und f_u mittels des Satzes von Dirichlet!

1