First Exercise Sheet for Compex Analysis

1. Calculate:

 $\sqrt[3]{1-i}, \sqrt[n]{-1}, \sqrt[n]{i}$ for n = 1, 2, ...

(with sketch!)

- 2. Display graphically:
 - $\begin{aligned} &\{z\in\mathbb{C}:|z-(1-3i)|\leq 2\};\ \{z\in\mathbb{C}:\mathrm{Im}((z-i)(1+i))>0\};\\ &\{z\in\mathbb{C}:|z-1|<|z+3|\};\ \{z\in\mathbb{C}:|z|+|z+i|=2\}.\end{aligned}$
- 3. Let |z 1| = 1. Show:

$$\arg(z-1) = 2\arg z = \frac{2}{3}\arg(z^2 - z)$$

4. Let $\mathbb{R}[x]$ be the ring of polynomials with real coefficients. Define an equivalence relation \sim on $\mathbb{R}[x]$ via

 $P_1(x) \sim P_2(x) \iff P_1(x) - P_2(x)$ is divisible by $x^2 + 1$ without remainder.

The set of thus defined equivalence classes, together with the operations + und \cdot defined in the usual sense, form the quotient ring $\mathbb{R}[x]/(x^2+1)$. Introduce an isomorphism between $\mathbb{R}[x]/(x^2+1)$ and \mathbb{C} . (This model of \mathbb{C} was supplied by Cauchy.)

5. Where are the following functions differentiable?

$$f(z) = (\bar{z})^2$$

$$f(z) = \log \sqrt{x^2 + y^2} + i \arctan \frac{y}{x}$$

$$f(z) = \sin^2(x+y) + i \cos^2(x+y)$$

Here, z = x + i y.

- 6. Show: A holomorphic function on a connected domain is, up to addition by a (real) constant, uniquely determined by its imaginary part.
- 7. Let $u: \mathbb{C} \to \mathbb{R}$ defined by

$$u(x,y) = x^{2} - y^{2} + e^{-y} \sin x - e^{y} \cos x.$$

Determine all functions $v : \mathbb{C} \to \mathbb{R}$, such that u and v satisfy the Cauchy-Riemann differential equations on all of \mathbb{C} .

8. Show: If f is holomorphic on a domain G and it holds that |f| = const., then f is constant on all of G.