## First Exercise Sheet for Compex Analysis

1. Calculate:

$$
\sqrt[3]{1-i}, \sqrt[n]{-1}, \sqrt[n]{i} \text { for } n=1,2, \ldots
$$

(with sketch!)
2. Display graphically:
$\{z \in \mathbb{C}:|z-(1-3 i)| \leq 2\} ;\{z \in \mathbb{C}: \operatorname{Im}((z-i)(1+i))>0\} ;$
$\{z \in \mathbb{C}:|z-1|<|z+3|\} ;\{z \in \mathbb{C}:|z|+|z+i|=2\}$.
3. Let $|z-1|=1$. Show:

$$
\arg (z-1)=2 \arg z=\frac{2}{3} \arg \left(z^{2}-z\right)
$$

4. Let $\mathbb{R}[x]$ be the ring of polynomials with real coefficients. Define an equivalence relation $\sim$ on $\mathbb{R}[x]$ via

$$
P_{1}(x) \sim P_{2}(x) \Longleftrightarrow P_{1}(x)-P_{2}(x) \text { is divisible by } x^{2}+1 \text { without remainder. }
$$

The set of thus defined equivalence classes, together with the operations + und $\cdot$ defined in the usual sense, form the quotient ring $\mathbb{R}[x] /\left(x^{2}+1\right)$. Introduce an isomorphism between $\mathbb{R}[x] /\left(x^{2}+1\right)$ and $\mathbb{C}$. (This model of $\mathbb{C}$ was supplied by Cauchy.)
5. Where are the following functions differentiable?

$$
\begin{aligned}
& f(z)=(\bar{z})^{2} \\
& f(z)=\log \sqrt{x^{2}+y^{2}}+i \arctan \frac{y}{x} \\
& f(z)=\sin ^{2}(x+y)+i \cos ^{2}(x+y)
\end{aligned}
$$

Here, $z=x+i y$.
6. Show: A holomorphic function on a connected domain is, up to addition by a (real) constant, uniquely determined by its imaginary part.
7. Let $u: \mathbb{C} \rightarrow \mathbb{R}$ defined by

$$
u(x, y)=x^{2}-y^{2}+e^{-y} \sin x-e^{y} \cos x .
$$

Determine all functions $v: \mathbb{C} \rightarrow \mathbb{R}$, such that $u$ and $v$ satisfy the Cauchy-Riemann differential equations on all of $\mathbb{C}$.
8. Show: If $f$ is holomorphic on a domain $G$ and it holds that $|f|=$ const., then $f$ is constant on all of $G$.

