
Theoretical material for the final test on
Introduction to Optimization

Tangent and normal cones to sets (definitions)

Proposition 2.21 - with proof

Theorem of Ljusternik (Th. 2.23) - without proof

Proof of the easy part of the Ljusternik theorem (Lemma 2.22)

Farkas lemma (Lemma 2.24) - with proof

The KKT Theorem 2.25 - with the proof in the normal case only

Slater condition and the KKT Theorem 3.8 (without proof)

Saddle points and Theorem 3.14 (with proof)

Dual Problem to a general non-linear one and Theorem 3.18 (with proof)

Formulation of the dual problem to a GLP

Statements (A1) - (A3) of Theorem 4.4 (without proof)

Prove that (A1) =⇒ (A3) in Theorem 4.4

Proof of implication (B4) =⇒ (B3) in Theorem 4.4

Definitions of extreme point and basis point of polyhedral sets

Prove that existence of a feasible point implies existence of a basis point (part
of Theorem 4.11
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Samples of the test on Optimization, WS
2018/19

Vladimir M. Veliov

Theoretical questions. One theoretical question will be given, similar to
the following ones (see the list on p. 1).

1. (Part of the Ljusternik theorem.) Let

K := {x ∈ Rn : g(x) = 0, h(x) ≤ 0},

where g : Rn 7→ Rm, h : Rn 7→ Rr are differentiable at x ∈ K. Prove that

TK(x) ⊂
{
l ∈ Rn : ∂g(x) l = 0, ∂h(x)|J(x) l ≤ 0

}
.

———————————————————————————–

2. (Part of the Farkas lemma.) Let

P = {x ∈ Rn : Gx = 0, Hx ≤ 0},

where G is an (m × n)-matrix and H is an (r × n)-matrix. Prove that the polar
cone P ◦ satisfies the inclusion

P ◦ ⊂ {G′λ+H ′µ : λ ∈ Rm, µ ∈ Rr, µ ≥ 0}.

——————————————————————————–

3. Formulate the KKT theorem for general differentiable (not necessarily convex)
functions. Is the normal form of the theorem (with λ0 6= 0) true for the example

min{x1}
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subject to

−(x1)
3 + x2 ≤ 0

−x2 ≤ 0.

Solution.
The problem is

min
x∈K

f(x), (1)

where
K = {x ∈ Rn : g(x) = 0, h(x) ≤ 0}, (2)

and g : Rn 7→ Rm, h : Rn 7→ Rr.

Define J(x) = {j : hj(x) = 0}.

Theorem. Let x∗ ∈ K be a local solution of problem (1), (2). Assume that the
functions f , g and h are continuously differentiable around x∗.

Then
(i) there exists a non-zero vector (λ0, λ, µ) ∈ R×Rm ×Rr such that

λ0∂f(x∗) + λ′∂g(x∗) + µ′∂h(x∗) = 0, (3)

µjhj(x
∗) = 0, j = 1, . . . , r, (4)

µ ≥ 0, λ0 ≥ 0. (5)

(ii) If, in addition, the matrix (
∂g(x∗)

∂h(x∗)|J(x∗)

)
is surjective (that is, its rank is m + |J(x∗)|, where |J(x∗)| is the number of the
elements of J(x∗)), then claim (i) of the theorem is true with λ0 = 1.

Answer to the additional question.
The point (0, 0)′ satisfies the constraints. For any other admissible point (x1, x2)

′

we have 0 ≤ x2 ≤ (x1)
3, hence x1 ≥ 0. Then (0, 0)′ is a solution of the problem.

Equation (3) reads in this case as

λ0

(
1
0

)
+ µ1

(
0
1

)
+ µ2

(
0
−1

)
= 0,
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which is possible only if λ0 = 0. Thus the normal form of the KKT does not hold
in this case.

——————————————————————————–

4. Formulate the KKT theorem for convex problems of the type

min
K∩K0

f(x) (6)

where K ⊂ Rn is defined by the constraints

Gix− bi = 0, i = 1, . . . ,m, (7)

Hjx− cj ≤ 0, j = 1, . . . , r′, (8)

hj(x) ≤ 0, j = r′ + 1, . . . , r, (9)

0 ≤ r′ ≤ r, and K0 is a polyhedral set.
Is the Slater condition fulfilled for the following sets (the sets may be changed

in the test!)

K := {x ∈ R3 : x1 − x3 = 0, x2 − x3 ≤ −1, (x1)
2 + (x2)

2 ≤ 1},

K0 := {x ∈ R3 : x2 ≥ 0}.

Solution.

Theorem. Assume that the functions f and hj are convex and that there exists
x̃ ∈ K0 satisfying (7) and (8), and also satisfying (9) as strict inequalities (the
Slater condition).

Then x∗ is an optimal solution if and only if x∗ ∈ K∩K0 and there exist λ ∈ Rm

and µ ∈ Rr
+ such that

L(x∗, λ, µ) ≤ L(x, λ, µ) ∀x ∈ K0, and µ′h(x∗) = 0, (10)

where L(x, λ, µ) = f(x) + λ′g(x) + µ′h(x).

The example: If x ∈ K ∩ K0, then x3 = x1, hence x2 − x1 ≤ −1. Since x2 ≥ 0
we have x1 ≥ 1 + x2 ≥ 1 and from (x1)

2 + (x2)
2 ≤ 1 we obtain that x1 = 1 and

x2 = 0. This is the only point in K ∩K0 and the non-linear constraint is satisfied
as an equality. Thus the Slater condition is not fulfilled. (This conclusion is also
evident from geometric representation on the (x1, x2)-plane.)



6 V.M. Veliov

Remark. If the non-linear constraint were (x1)
2 + (x2)

2 ≤ 1.0001, the Slater
condition would be fulfilled with x̃ = (1, 0, 1), for example.

——————————————————————————–

5. Formulate the dual problem to the following linear optimization problem

min 〈c, x〉

Aix = bi, i = 1, . . . ,m,

Aix ≥ bi, i = m+ 1, . . . ,m+ r,

where c ∈ Rn, Ai are n-dimensional row-vectors and bi are real numbers.
Formulate the existence claims of the the duality theorem 4.18.

——————————————————————————–

6. Formulate the dual problem to the following linear optimization problem

min 〈c, x〉

Aix ≥ bi, i = 1, . . . , r,

xk ≥ 0, k = 1, . . . , l,

where c ∈ Rn, Ai are n-dimensional row-vectors and bi are real numbers.
One of the claims of the duality theorem 4.4 applied to this problem is:

(B4) x∗ and y∗ are feasible points for GLP and GLD, respectively, and the comple-
mentary slackness conditions hold:

y∗j (Ajx
∗ − bj) = 0, j = 1, . . . , r, x∗k ([A′]ky

∗ − ck) = 0, k = 1, . . . , l.

Prove that it implies the following one: (B3) (x∗, y∗) is a saddle point of the Lagrange
function in K0 × Y0;

——————————————————————————–

7. Formulate and prove the general duality theorem (Theorem 3.18).

——————————————————————————–
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8. Prove the following statement (a part of Theorem 4.11 in the script):

Theorem. Let A be a non-zero matrix. If the linear problem

min
x∈K
{c′x}, K = {x ∈ Rn : Ax = b, x ≥ 0},

has a feasible point (that is, K 6= ∅), then it has a basis point.

——————————————————————————–
——————————————————————————–

Samples of particular problems. Three problems similar to the fol-
lowing ones will be given in addition to the theoretical task. (The problems will be
individual for every student!)

Problem 1. Solve the problem

min{2x1 + x2 + 2x3 + x4}

subject to
x1 + x2 + 5x3 + x4 = 7

2x2 + 7x3 + x4 = 11,

x1, x2, x3, x4 ≥ 0.

by using the simplex method.
Hint: Use x1 and one additional variable z5 in the second equation as initial basis

variables in the auxiliary problem for finding an initial basis for the given problem.

Solution. The auxiliary problem for finding an initial basis point is

min{z5}

subject to
x1 + x2 + 5x3 + x4 = 7

z5 + 2x2 + 7x3 + x4 = 11,

x1, x2, x3, x4, z5 ≥ 0.

We have (with c = (0, 0, 0, 0, 1)′)

∆2 = c2 − (c1.1 + c5.2) = −2,

∆3 = c3 − (c1.5 + c5.7) = −7,

∆4 = c4 − (c1.1 + c5.1) = −1.
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We can chose any of the non-basis variables as a new basis variable. Let us take
ν = 3 (since ∆2 is the minimal). Then according to the rule for choosing which
basis variable to be removed we have to choose κ = 1, since

7

5
<

11

7
.

Then we have

x3 + 1
5
x1 + 1

5
x2 + 1

5
x4 = 7

5

z5 + 2x2 + 7
(
7
5
− 1

5
x1 − 1

5
x2 − 1

5
x4
)

+ x4 = 11,

Hence, the adapted to the basis (x, z5) representation of the equality constraints is

x3 + 1
5
x1 + 1

5
x2 + 1

5
x4 = 7

5

z5 − 7
5
x1 + 3

5
x2 − 2

5
x4 = 6

5
,

Then we calculate (still with c = (0, 0, 0, 0, 1)′)

∆1 = c1 − (c3.
1

5
+ c5.

−7

5
) =

7

5
,

∆2 = c2 − (c3.
1

5
+ c5.

3

5
) = −3

5
,

∆4 = c4 − (c3.
1

5
+ c5.

−2

5
) =

2

5
.

According to the rule of the simplex algorithm we have to choose ν = 2, and since

7/5

1/5
>

6/5

3/5

we have to choose κ = 5. That is, z5 leaves the basis and x2 enters the basis.
We express

x2 − 7
3
x1 − 2

3
x4 + 5

3
z5 = 2

x3 + 1
5
x1 + 1

5

(
2− 7

3
x1 − 2

3
x4 − 5

3
z5
)

+ 1
5
x4 = 7

5
,

Since all the auxiliary variables have left the basis (this is only z5 in our problem
and we ignore it further) we have found an initial basis for the original problem,
((x2, x3)), and the adapted representation, found from the above equations, is

x2 − 7
3
x1 − 2

3
x4 = 2

x3 + 2
3
x1 + 1

3
x4 = 1.
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Now we calculate (this time with c = (2, 1, 2, 1)′)

∆1 = c1 − (c2.
−7

3
+ c3.

2

3
) = 3,

∆4 = c4 − (c2.
−2

3
+ c3.

1

3
) = 1.

Since ∆1 and ∆4 are both positive, we have reached an optimal solution, namely,
x∗ = (0, 2, 1, 0)′.

——————————————————————————

Problem 2. Describe analytically the tangent and the normal cone to the set
K ⊂ R3 defined by the constraints

(x1)
2 + 2(x3)

2 ≤ 3,

(x1)
3 + (x2)

3 = 9

at the point x∗ = (1, 2, 1)′ ∈ K.
Hint: Check if the assumptions of the Ljusternik theorem are fulfilled and apply

it to find TK(x∗). Then apply the Farkas lemma to find NK(x∗).

Solution. Here

g(x) = (x1)
3 + (x2)

3 − 9, h(x) = (x1)
2 + 2(x3)

2 − 3.

Then

∂g(x∗) =
(
3(x∗1)

2, 3(x∗2)
2, 0
)

= (3, 12, 0),

∂h(x∗) = (2x∗1, 0, 4x∗3) = (2, 0, 4).

For l̄ := (4,−1,−3)′ (this is just one of many possible choices) we have

∂g(x∗) l̄ = (3, 12, 0)

 4
−1
−3

 = 0, ∂h(x∗) l̄ = (2, 0, 4)

 4
−1
−3

 = −4 < 0,

thus the assumptions of the Ljusternik theorem are fulfilled.
Then

TK(x∗) =

l ∈ R3 : (3, 12, 0)

 l1
l2
l3

 = 0, (2, 0, 4)

 l1
l2
l3

 ≤ 0


= {l ∈ R3 : 3l1 + 12l2 = 0, 2l1 + 4l3 ≤ 0}.
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Then we apply the Farkas lemma with G = (3, 12, 0) and H = (2, 0, 4) and
obtain

NK(x∗) =


 3

12
0

λ +

 2
0
4

µ : λ ∈ R, µ ≥ 0


=


 3λ+ 2µ

12λ
4µ

 : λ ∈ R, µ ≥ 0

 .

——————————————————————————

Problem 3. Consider the problem

min
x∈K
{f(x) := x1 − 2x2 + 3x3 − 4x4}

with
K :=

{
x ∈ R4 : (x1)

2 + (x2)
2 + (x3)

2 + (x4)
2 ≤ 2

}
as a primal problem and find the function D(µ) of the corresponding dual problem

max
µ≥0

D(µ).

Then find the solution µ∗ of the dual problem and evaluate the corresponding x∗

(resulting from the definition of D(µ∗)). Is x∗ a solution of the primal problem?

Solution. Here

L(x, µ) = x1 − 2x2 + 3x3 − 4x4 + µ
(
(x1)

2 + (x2)
2 + (x3)

2 + (x4)
2 − 2

)
. (11)

Since by definition D(µ) = minx∈R4 L(x, µ) and L is convex with respect to x the
minimizing x is determined by the condition ∂xL(x, µ) = 0:

x1 = − 1

2µ
, x2 =

1

µ
, x3 = − 3

2µ
, x4 =

2

µ
. (12)

Then substituting in (11) we calculate

D(µ) = − 15

2µ
− 2µ.

Since D(µ) is concave, its maximum on the set µ ≥ 0 is attained either for µ = 0
(which gives the “bad” value D = −∞, which cannot be maximal), or at a point
where ∂D(µ) = 0:

15

2µ2
− 2 = 0
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hence (taking into account that µ ≥ 0)

µ∗ =

√
15

2
.

We evaluate D(µ∗) = −2
√

15.
From (12) we calculate a “candidate” for a solution of the primal problem:

x∗1 = − 1√
15
, x∗2 =

2√
15
, x∗3 = − 3√

15
, x∗4 =

4√
15
,

Then we evaluate

f(x∗) =
1√
15

(−1− 4− 9− 16) = −2
√

15 = D(µ∗),

which means that x∗ is an optimal solution due to the general duality theorem
(Theorem 3.12 in the script).

——————————————————————————

Problem 4. Write down the dual problem to the following one:

min {2x1 + x2 + 4x3}

x1 − x2 + x3 ≥ 2

−2x1 + x2 + 2x3 ≥ 1

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Solve the dual problem geometrically and use the duality theorem to determine an
optimal solution of the primal problem.

Solution. The dual problem reads as

max {2y1 + y2}

y1 − 2y2 ≤ 2

−y + y2 ≤ 1

y1 + 2y2 ≤ 4

y1 ≥ 0, y2 ≥ 0.
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The graphical solution (I skip it here) gives y∗1 = 3, y∗2 = 1
2

and the second inequal-
ity is non-active. The complementary slackness condition in the duality theorem
implies that x∗2 = 0. Since y∗1 and y∗2 are both positive, the complementary slackness
condition implies also that the two inequality constraints in the primal problem are
active. Taking into account that x∗2 = 0 we have the equations

x1 + x3 = 2

−2x1 + 2x3 = 1.

Solving them we obtain the following solution of the primal problem: x∗ =
(
3
4
, 0, 5

4

)′
.

——————————————————————————

Problem 5. Solve the problem

min {(x1)2 + 2(x2)
2 + (x3)

2}

x1 + x2 − lnx3 ≥ 1

x3 ≥ 1.

by using the KKT theorem.

Solution. First we reformulate the problem in the form as in the KKT theorem:

min {(x1)2 + 2(x2)
2 + (x3)

2}

−x1 − x2 + lnx3 + 1 ≤ 0 (13)

−x3 + 1 ≤ 0. (14)

This problem has a solution since the level sets Kc := {x ∈ R3 : f(x) ≤ c}
of the objective function are compact and, for example, K2 ∩ K 6= ∅. Then the
existence theorem from Chapter 1 is applicable. Every optimal solution is a part of
a KKT point.

First we search for KKT points with λ0 = 1. The Lagrange function is

L(x, µ) = (x1)
2 + 2(x2)

2 + (x3)
2 + µ1(−x1 − x2 + lnx3 + 1) + µ2(−x3 + 1)
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and the KKT conditions consist of the equations

∂x1L = 2x1 − µ1 = 0 (15)

∂x2L = 4x2 − µ1 = 0 (16)

∂x3L = 2x3 +
µ1

x3
− µ2 = 0 (17)

µ1(−x1 − x2 + lnx3 + 1) = 0 (18)

µ2(−x3 + 1) = 0 (19)

and the inequalities (13), (14) and µ1 ≥ 0, µ2 ≥ 0.
We consider the following four cases.

(i) µ1 = µ2 = 0. Then from (15)–(17) x1 = x2 = x3 = 0, which is not a feasible
point due to (14).

(ii) µ1 = 0, µ2 > 0. Then from (19) x3 = 1 and from (15), (16) x1 = x2 = 0. This
is not a feasible point due to (13).

(iii) µ1 > 0, µ2 = 0. Then (15)–(18) give

2x1 − µ1 = 0

4x2 − µ1 = 0

2x3 +
µ1

x3
= 0

x1 + x2 − lnx3 = 1.

The third equation gives µ1 = −2(x3)
2, which contradicts µ1 > 0. Thus we do not

obtain a KKT point also in this case.

(iv) µ1 > 0, µ2 > 0. From (19) we get x3 = 1. Equations (15), (16) implay x1 = 2x2
and (18) implies x1 +x2 = 1. Then x1 = 2

3
, x2 = 1

3
. So we obtain a KKT point with

x = (2
3
, 1
3
, 1)′.

Now we try to find abnormal KKT points (with λ0 = 0). Such may arise only if the
surjectivity condition in the KKT theorem is not fulfilled. We have

∂h(x) =

(
−1 −1 1

x3

0 0 −1

)
,
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which has rank = 2 for every x3 ≥ 1. Thus the surjectivity condition is fulfilled and
there are no abnormal KKT points.

Since the only KKT point is x = (2
3
, 1
3
, 1)′ and since the problem has a solution, this

point is the unique optimal solution.

——————————————————————————



Introduction to Optimization 15

Sample test
Tasks:

1. Formulate the KKT theorem for convex problems:
Is the Slater condition fulfilled for the following sets

K := {x ∈ R3 : x1 − x3 = 0, x2 − x3 ≤ −1, (x1)
2 + (x2)

2 ≤ 1},

K0 := {x ∈ R3 : x2 ≥ 0}.

2. Consider the problem

min
x∈K
{f(x) := x1 − 2x2 + 3x3 − 4x4}

with
K :=

{
x ∈ R4 : (x1)

2 + (x2)
2 + (x3)

2 + (x4)
2 ≤ 9

}
as a primal problem and find the function D(µ) of the corresponding dual problem

max
µ≥0

D(µ).

Then find the solution µ∗ of the dual problem and evaluate the corresponding x∗

(resulting from the definition of D(µ∗)). Is x∗ a solution of the primal problem and
why?

3. Solve the problem

min {3(x1)
2 + 4(x2)

2 + (x3)
2}

x1 + x2 − lnx3 ≥ 1

x3 ≥ 1.

by using the KKT theorem.

4. Apply the simplex method to solve the linear problem

min{x1 + x2 − x4}

subject to

x1 + 5x3 = 1,

x2 + 2x4 = 2,

x1, x2, x3, x4 ≥ 0.

Hint: Use (1, 2, 0, 0)′ as an initial basis point.


