Institute of Analysis and Scientific Computing

Ao.Univ.Prof. Dr. Gabriela Schranz-Kirlinger Tobias Danczul, BSc

106.054 UE AKNUM Computernumerik, 101.484 VU Computernumerik - SS 2016

Vorzubereiten bis: 30. Mai 2017

23. Mai 2017

4. Übungsblatt

Aufgabe 1:

Berechnen Sie für die Stützpunkte $\{(x_k, y_k)\} = \{(0, 0), (1, 3), (2, 2), (3, 1)\}$ die Dividierten Differenzen

$$f[x_0, x_1]$$
 $f[x_0, x_1, x_2]$ $f[x_0, x_1, x_2, x_3]$

und geben Sie das entsprechende Newtonsche Interpolationspolynom an.

Aufgabe 2:

Seien die Stützstellen $x_0 = -2, x_1 = -1, x_2 = 0, x_3 = 1$ und $x_4 = 2$ gegeben. Berechnen Sie die Lagrange- bzw. die Newton-Basispolynome und stellen Sie diese graphisch dar. Erläutern Sie die wesentlichen Unterschiede.

Aufgabe 3:

Betrachten Sie die Funktion

$$f(x) = \sinh x$$

auf dem Intervall $[0, \pi]$. Führen Sie verschiedene Polynominterpolationen p(x) durch und geben Sie jeweils den Fehler |f(x) - p(x)| an der Stelle $\frac{\pi}{3}$ an:

- (a) Polynom vom Grad 1: $x_0 = 0, x_1 = \pi$
- (b) Polynom vom Grad 2: x_0, x_1 und $x_2 = \frac{\pi}{2}$
- (c) Polynom vom Grad 3: $x_0, x_1, x_2, x_3 = \frac{\pi}{4}$ und $x_0, x_1, x_2, x_3 = \frac{3\pi}{4}$
- (d) Theoretische Abschätzung des Interpolationsfehlers für (c) an der Stelle $\frac{\pi}{3}$

Aufgabe 4:

Berechnen Sie händisch das Hermiteinterpolationspolynom zu den Stützstellen

$$f(1) = 2$$
, $f'(1) = 1$, $f(4) = 3$, $f'(4) = 2$ $f''(4) = 1$.

Verwenden Sie dazu das Nevilleschema.

Aufgabe 5:

Interpolieren Sie mithilfe von Matlab die Funktion von Runge

$$f(x) = \frac{1}{25x^2 + 1}$$

auf [-1,1] auf zwei Arten für n=20:

(a) an den äquidistanten Punkten $x_j = -1 + \frac{2j}{n}$ $j = 0, 1, \dots, n$

(b) an den Nullstellen des n+1-ten Tschebyscheff Polynoms T_{n+1}

Plotten Sie den Fehlerverlauf von beiden Varianten und interpretieren Sie die Ergebnisse.

Aufgabe 6:

Der Interpolationsfehler an einer Stelle \bar{x} hängt stark von der Funktion

$$|\omega(\bar{x})| = |(\bar{x} - x_0)(\bar{x} - x_1)...(\bar{x} - x_n)|$$

ab. Für $x_0 = 0$ und $x_2 = 1$ mit n = 2 soll eine Zwischenstelle x_1 bestimmt werden, so dass $\max_{0 \le \bar{x} \le 1} \omega(\bar{x})$ minimal wird.

Aufgabe 7:

Approximieren Sie $\sqrt{3}$ durch $p(\frac{1}{2})$, wobei p das Interpolationspolynom 3. Grades zu

$$p(x) = 3^x$$
 $x = -1, 0, 1, 2$

darstellt. Verwenden Sie dazu das Neville-Schema. Geben Sie eine Schranke für den Approximationsfehler an.

Aufgabe 8:

Sei $f(x) = \exp(\lambda x)$ mit $\lambda \in \mathbb{R}$ und $(x_n)_{n \in \mathbb{N}_0}$ eine Folge paarweise verschiedener Stützstellen aus dem Intervall [a, b]. Zeigen Sie, dass für die interpolierenden Polynome p_n vom Grad n mit $p_n(x_j) = f(x_j)$, j = 0, ..., n gilt:

$$\lim_{n \to \infty} \max_{x \in [a,b]} |p_n(x) - f(x)| = 0$$

Hinweis: Zeigen Sie mithilfe von Satz 7 aus Abschnitt 4.6, dass das zu p gehörige Interpolationspolynom \tilde{p} die Ungleichung

$$||p - \tilde{p}||_{\infty} \le \frac{||N_{n+1}||_{\infty}}{(n+1)!} ||f^{(n+1)}||_{\infty}$$

erfüllt, wobei N_{n+1} das (n+1)-te Newton-Basispolynom beschreibt, und schließen Sie daraus, dass

$$\max_{x \in [a,b]} |p_n(x) - f(x)| \le \frac{(b-a)^{n+1} \lambda^{n+1}}{(n+1)!} ||f||_{\infty}$$

gilt. Argumentieren Sie anschließend, warum diese obere Schranke für wachsende n gegen 0 konvergiert.