

Übungsaufgaben 21.03.2024

- 1. Gegeben sei das **elektrostatische Feld** $\vec{E} = (6xy, 3x^2 3y^2, 0)$.
 - a) Man berechne das **Linienintegral** von \vec{E} vom Punkt (0, 0, 0) über den Punkt $(x_1, 0, 0)$ zum Punkt $(x_1, y_1, 0)$. $(L\ddot{o}sung: \int \vec{E} \cdot d\vec{s} = 3x_1^2y_1 y_1^3)$
 - b) Berechnen Sie nun das **Linienintegral** von \vec{E} vom Punkt (0, 0, 0) über den Punkt $(0, y_1, 0)$ zum Punkt $(x_1, y_1, 0)$. (*Lösung:* $\int \vec{E} \cdot d\vec{s} = 3x_1^2y_1 y_1^3$)
 - c) Vergleichen Sie die beiden Resultate! Welche physikalische Bedeutung hat das Linienintegral $\int \vec{E} \cdot d\vec{s}$?

Hinweis: Alle gegebenen Punkte mögen durch Geraden verbunden werden.

- 2. Thomsonsches Atommodell: Eine positive Ladung q sei homogen über eine Vollkugel mit dem Radius R verteilt. In der Mitte der Kugel befinde sich eine punktförmigen negative Ladung -q.
 - a) Berechnen Sie das **elektrische Feld** \vec{E} und das **Potential** ϕ dieser Ladungsanordnung im gesamten Raum.

(Lösung: Potential im Inneren der Kugel: $\phi(r) = \frac{q}{4 \cdot \pi \cdot \varepsilon_0} \cdot \left(\frac{3}{2 \cdot R} - \frac{r^2}{2 \cdot R^3} - \frac{1}{r} \right)$)

b) Berechnen Sie die **Energie** W, welche nötig ist, um die negative **Punktladung aus** dem Zentrum der Kugel ins Unendliche zu befördern, zunächst allgemein und dann für R = 0.53 Å (1. Bohr'scher Radius) und $q = 1.602 \cdot 10^{-19}$ C (Elementarladung). ($L\ddot{o}sung: W = 6.53 \cdot 10^{-18}$ J)

Hinweis: Benutzen Sie das Superpositionsprinzip und das Gauß'sche Gesetz der Elektrostatik.

- 3. Gesucht sind Potential und Stärke des elektrostatischen Feldes einer kreisförmigen Platte vom Radius R=0,1 m im Abstand d=0,2 m senkrecht über dem Mittelpunkt der Platte. Die Platte trage die Ladung Q=1 µC und befinde sich im Vakuum. (*Lösung:* $\phi=42,4$ kV, $E=1,9\cdot10^5$ V m⁻¹)
- 4. **Madelung-Konstante eines einfachen ionischen Systems:** Man berechne die potentielle Energie je Ion für einen unendlich langen eindimensionalen ionischen Kristall, das heißt: eine Reihe aus äquidistant angeordneten Ladungen vom Betrag *e* mit stets wechselndem Vorzeichen.

Hinweis: Die Taylor-Reihenentwicklung von $\ln(1+x)$, beziehungsweise die Kenntnis des Konvergenzverhaltens der alternierenden harmonischen Reihe sind hilfreich.

- 5. Bei ungestörtem schönen Wetter beträgt das senkrecht nach unten gerichtete elektrische Feld in Bodennähe $E_1=130\,\mathrm{V\,m^{-1}}$ und in $h=10\,\mathrm{km}$ Höhe $E_2=4\,\mathrm{V\,m^{-1}}$.
 - a) Berechnen Sie daraus die Flächenladungsdichte σ der Erdoberfläche und die (als homogen angenommene) Raumladungsdichte ρ der Atmosphäre. (*Lösung:* $\rho = 1,12 \cdot 10^{-13} \, \mathrm{C \, m^{-3}})$
 - b) Welche **Potentialdifferenz** U herrscht zwischen Erdoberfläche und 10 km Höhe? (Lösung: $U=670\,\mathrm{kV}$)

Übungsaufgaben 21.03.2024

6. Gegeben sind zwei **Punktladungen** Q_1 und Q_2 . Es gelte: $|Q_1| > |Q_2|$. Weiters seien die **Vorzeichen** von Q_1 und Q_2 **entgegengesetzt**. Q_1 befinde sich **im Ursprung**, Q_2 liege **im Punkt** x = b.

- a) Man bestimme jene Punkte x_1 und x_2 auf der x-Achse, in denen das **Potential null** ist.
- b) Man zeige, dass auf der Oberfläche einer Kugel, welche die Punkte x_1 und x_2 beinhaltet und deren Mittelpunkt auf der x-Achse liegt, das Potential dieser Ladungsanordnung ebenfalls gleich null ist.