

Übungsaufgaben 23.05.2024

1. Wellenleiter: Ein Wellenleiter (z.B. aus Doppeldraht) mit Wellenimpedanz Z_0 wird an einem Ende mit einem Widerstand R abgeschlossen (siehe Skizze).

Berechnen Sie den Reflexionskoeffizienten r dieses Leiters für die von links kommende Welle $U=U_0\cdot e^{i\cdot(k\cdot z-\omega\cdot t)}$. (Lösung: $r=\frac{R-Z_0}{R+Z_0}$)

- 2. Ein Wellenleiter habe einen rechtwinkligen Querschnitt mit den Abmessungen $5\,\mathrm{cm} \times 10\,\mathrm{cm}$.
 - a) Wie groß ist die untere Grenzfrequenz? (Lösung: $\nu_c = 1.5 \, \text{GHz}$)
 - b) Man skizziere Richtung und räumliche Änderung des elektrischen Feldes im Falle einer Welle mit dieser Grenzfrequenz.
 - c) Man ermittle die Phasen- und Gruppengeschwindigkeit einer Welle, deren Frequenz das 1,25-fache der Grenzfrequenz ist. (Lösung: $v_{\varphi}=5c/3,\ v_{G}=3c/5$)
 - d) Man ermittle die **Schwächungslänge** einer Welle, deren Frequenz das 0,8-fache der Grenzfrequenz ist! ($L\ddot{o}sunq$: $\delta = 5,3$ cm)

Hinweis: Die Mode mit der geringsten Grenzfrequenz ist die TE_{10} bzw. TE_{01} Mode.

- 3. Polarisation und Brechung: gegeben sei ein geladenen Teilchen mit Masse m und Ladung e.
 - a) Stellen Sie die Bewegungsgleichung dieses Teilchens im elektrischen Feld $E_x(t) = E_0 \cdot e^{-i \cdot \omega \cdot t}$ auf.
 - b) Berechnen Sie daraus die frequenzabhängige Polarisation $P = N \cdot e \cdot x$ (N ... Ladungsdichte) und die dielektrische Permittivität $\varepsilon(\omega)$. Wie lautet der Frequenzabhängige komplexe Brechungsindex $n(\omega)$?

Die Resonanzkreisfrequenz von Stickstoffmolekülen liegt bei $\omega_0=10^{16}\,\mathrm{rad}\,\mathrm{s}^{-1}.$

c) Man berechne die **Brechzahl** n von Stickstoff bei Atmosphärendruck für Licht der Wellenlänge $\lambda = 500$ nm (*Lösung:* $n = 1 + 4.9 \cdot 10^{-4}$)

Hinweis: Stickstoff ist ein farbloses, durchsichtiges Gas!

- 4. **Zirkular polarisiertes Licht** der Intensität I_0 (das ist der zeitliche Mittelwert der Energie je Zeiteinheit und Flächeneinheit; für Licht einer gegebenen Frequenz proportional dem Ausgangsstrom eines Photomultipliers) treffe auf ein einzelnes **Polaroidfilter** auf. Man zeige, dass die durchgelassene Intensität gleich $I_0/2$ ist.
- 5. **Zirkular polarisiertes Licht** der Intensität I_0 falle auf drei aufeinanderfolgende Polaroidfilter. Das erste und das dritte Filter befinden sich zueinander in gekreuzter Stellung, das heißt: ihre bevorzugten Durchlassrichtungen stehen senkrecht aufeinander. Das mittlere Filter schließt mit der Achse des ersten den Winkel θ ein.

Man zeige, dass die durchgelassene Intensität gleich $\frac{I_0}{2}\cos^2\theta\sin^2\theta$ ist.

Übungsaufgaben

23.05.2024

- 6. **Drehung der Polarisationsebene:** Eine sehr große Anzahl n+1 von **Polaroidfiltern** sei übereinandergelegt. Die bevorzugten Durchlassrichtungen zweier unmittelbar aufeinanderfolgender Filter schließen jeweils den positiven Winkel α miteinander ein. Das letzte Polaroidfilter ist also um den Winkel $\theta = n\alpha$ gegen das erste verdreht. Nun falle in Richtung des ersten Filters **linear polarisiertes Licht mit der Intensität** I_0 auf die Filteranordnung.
 - a) Berechnen Sie die durchgelassene Intensität. Vernachlässigen Sie dabei die durch die Reflexion entstehenden Verluste.
 - b) Interpretieren Sie das Ergebnis für $n \to \infty$ (der Gesamtwinkel θ wird konstant gehalten)!

Hinweis: Taylor-Entwicklung!