
Übungsaufgaben 13.06.2024

- 1. Berechnen Sie den Vergrößerungsfaktor einer Sammellinse für
 - a) ein Objekt senkrecht zu optischer Achse (lateral);
 - b) ein Objekt parallel zu optischer Achse (axial).
 - c) Wann sind die beiden **Vergrößerungen gleich**? (Lösung: Für g = 2f)

Hinweis: Das Objekt kann als klein angenommen werden

- 2. Bestimmen Sie den Ablenkwinkel eines Lichtstrahls beim Durchgang durch ein Prisma mit Prismenwinkel γ und Brechungsindex n
 - a) im **symmetrischen** Fall (Eintrittswinkel gleich Austrittswinkel);
 - b) bei **senkrechtem Einfall**.
 - c) Bestimmen Sie die Näherung beider Formeln für $\gamma \ll 1$.
- 3. Betrachten Sie eine dünne plankonvexe Linse mit Krümmungsradius R und Brechungsindex n:

Berechnen Sie in paraxialer Näherung die Brennweite

- a) über das Snelliussche Gesetz;
- b) über die Bedingung, dass **alle Strahlen den gleichen Weg** haben müssen (Satz der geometrischen Optik);
- c) als Grenzfall einer Bikonvexlinse für $R_1 \to \infty$. (Lösung: $f \approx R/(n-1)$)
- 4. Berechnen Sie die typische sphärische Aberration eines sphärischen Hohlspiegels mit Krümmungsradius R (d.h. die Brennweite f(h) in Abhängigkeit vom Achsabstand h der einfallenden Strahlen) für kleine h. (Lösung: $f(h) \approx R/2 h^2/(4R)$)
- 5. Münze im Wasser: Eine Münze liegt am Grund eines Schwimmbeckens in $h = 4 \,\mathrm{m}$ Tiefe. Ein Lichtstrahl tritt unter einem Winkel von $\alpha = 20^{\circ}$ zur Oberfläche aus dem Wasser. Die Wassertemperatur beträgt 20 °C. Wie tief liegt die Münze scheinbar für einen Beobachter? ($L\ddot{o}sung: 1,45 \,\mathrm{m}$)
- 6. Matrixmethoden: Bestimmen Sie die Transformationsmatrix M von
 - a) einer dicken Sammellinse mit den Krümmungsradien der Linsenflächen R_1 und R_2
 - b) einer dicken Zerstreuungslinse mit den Krümmungsradien der Linsenflächen R_1 und R_2

Der Lichtstrahl falle von links auf die erste Grenzfläche ein, der **Brechungsindex der** Umgebung sei n_1 , jener der Linse n_2 .

Hinweis: Die Krümmungsradien seien so groß, dass der Strahlweg in der Linse durch deren Dicke D angenähert werden kann. Die Lösung kann der Literatur entnommen werden.